Suppr超能文献

预测社区获得性肺炎短期死亡率的生物标志物:系统评价和荟萃分析。

Biomarkers for predicting short-term mortality in community-acquired pneumonia: A systematic review and meta-analysis.

机构信息

Division of Health Sciences, Faculty of Medicine, Universidad del Norte, and Hospital Universidad del Norte, Colombia.

Division of Health Sciences, Faculty of Medicine, Universidad del Norte, and Hospital Universidad del Norte, Colombia.

出版信息

J Infect. 2016 Mar;72(3):273-82. doi: 10.1016/j.jinf.2016.01.002. Epub 2016 Jan 15.

Abstract

OBJECTIVES

The pneumonia severity index and CURB-65 are risk assessment tools widely used in community-acquired pneumonia (CAP). However, limitations in these prognostic scores have led to increasing interest in finding biomarkers that might provide additional information. To date, the role of these biomarkers has not been fully elucidated.

METHODS

We systematically searched the Medline, Web of Knowledge, Science Direct, and LILACS databases. We included studies that assessed the accuracy of biomarkers for the prediction of in-hospital or ≤30-day mortality, in hospitalized adults with CAP. Two independent investigators extracted patient and study characteristics, which were thereafter pooled using a random effects model. Relationships between sensitivity and specificity of biomarkers and prognostic scores were plotter using the area under the receiver operator characteristic curve (AUC).

RESULTS

We included 24 articles and 2 databases from 1069 reviewed abstracts, which provided 10,319 patients for analysis. Reported mortality rates varied from 2.4% to 34.6%. The highest AUC values for predicting mortality were associated with pro-adrenomedullin (0.80) and prohormone forms of atrial natriuretic peptide (0.79), followed by cortisol (0.78), procalcitonin (0.75), copeptin (0.71), and C-reactive protein (0.62). There were no statistically significant differences between the AUCs of the studied biomarkers, other than for copeptin and C-reactive protein, which performed comparatively poorly. When compared with the CAP-specific scores, the AUCs were not significantly different from those of most biomarkers.

CONCLUSIONS

The identified biomarkers are able to predict mortality with moderate to good accuracy in CAP. However, biomarkers have no clear advantage over CAP-specific scores for predicting mortality.

摘要

目的

肺炎严重指数和 CURB-65 是广泛用于社区获得性肺炎(CAP)的风险评估工具。然而,这些预后评分的局限性导致人们越来越关注寻找可能提供额外信息的生物标志物。迄今为止,这些生物标志物的作用尚未完全阐明。

方法

我们系统地检索了 Medline、Web of Knowledge、Science Direct 和 LILACS 数据库。我们纳入了评估生物标志物对 CAP 住院成人院内或≤30 天死亡率预测准确性的研究。两名独立的研究者提取了患者和研究特征,然后使用随机效应模型对其进行汇总。使用受试者工作特征曲线(AUC)下的面积来绘制生物标志物与预后评分之间的敏感性和特异性关系图。

结果

我们纳入了 24 篇文章和 1069 篇综述摘要中的 2 个数据库,共分析了 10319 例患者。报告的死亡率从 2.4%到 34.6%不等。预测死亡率的最高 AUC 值与前肾上腺髓质素(0.80)和心钠素前体形式(0.79)相关,其次是皮质醇(0.78)、降钙素原(0.75)、 copeptin(0.71)和 C 反应蛋白(0.62)。除 copeptin 和 C 反应蛋白外,研究生物标志物的 AUC 值之间没有统计学上的显著差异,而 copeptin 和 C 反应蛋白的表现相对较差。与 CAP 特异性评分相比,大多数生物标志物的 AUC 没有显著差异。

结论

确定的生物标志物能够以中等至良好的准确度预测 CAP 中的死亡率。然而,生物标志物在预测死亡率方面并没有明显优于 CAP 特异性评分的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验