Suppr超能文献

一种用于研究动态声道塑形的快速灵活的磁共振成像(MRI)系统。

A fast and flexible MRI system for the study of dynamic vocal tract shaping.

作者信息

Lingala Sajan Goud, Zhu Yinghua, Kim Yoon-Chul, Toutios Asterios, Narayanan Shrikanth, Nayak Krishna S

机构信息

Electrical Engineering, University of Southern California, Los Angeles, CA.

Samsung Medical Center, Seoul, South Korea.

出版信息

Magn Reson Med. 2017 Jan;77(1):112-125. doi: 10.1002/mrm.26090. Epub 2016 Jan 17.

Abstract

PURPOSE

The aim of this work was to develop and evaluate an MRI-based system for study of dynamic vocal tract shaping during speech production, which provides high spatial and temporal resolution.

METHODS

The proposed system utilizes (a) custom eight-channel upper airway coils that have high sensitivity to upper airway regions of interest, (b) two-dimensional golden angle spiral gradient echo acquisition, (c) on-the-fly view-sharing reconstruction, and (d) off-line temporal finite difference constrained reconstruction. The system also provides simultaneous noise-cancelled and temporally aligned audio. The system is evaluated in 3 healthy volunteers, and 1 tongue cancer patient, with a broad range of speech tasks.

RESULTS

We report spatiotemporal resolutions of 2.4 × 2.4 mm every 12 ms for single-slice imaging, and 2.4 × 2.4 mm every 36 ms for three-slice imaging, which reflects roughly 7-fold acceleration over Nyquist sampling. This system demonstrates improved temporal fidelity in capturing rapid vocal tract shaping for tasks, such as producing consonant clusters in speech, and beat-boxing sounds. Novel acoustic-articulatory analysis was also demonstrated.

CONCLUSION

A synergistic combination of custom coils, spiral acquisitions, and constrained reconstruction enables visualization of rapid speech with high spatiotemporal resolution in multiple planes. Magn Reson Med 77:112-125, 2017. © 2016 Wiley Periodicals, Inc.

摘要

目的

本研究旨在开发并评估一种基于磁共振成像(MRI)的系统,用于研究言语产生过程中动态声道塑形,该系统具有高空间和时间分辨率。

方法

所提出的系统利用(a)对感兴趣的上气道区域具有高灵敏度的定制八通道上气道线圈,(b)二维黄金角螺旋梯度回波采集,(c)实时视图共享重建,以及(d)离线时间有限差分约束重建。该系统还提供同步的噪声消除和时间对齐音频。在3名健康志愿者和1名舌癌患者中对该系统进行了评估,涉及广泛的言语任务。

结果

我们报告单切片成像时每12毫秒的时空分辨率为2.4×2.4毫米,三切片成像时每36毫秒的时空分辨率为2.4×2.4毫米,这反映出比奈奎斯特采样快约7倍。该系统在捕捉快速声道塑形方面表现出更高的时间保真度,例如在言语中产生辅音群和口技声音等任务。还展示了新颖的声学-发音分析。

结论

定制线圈、螺旋采集和约束重建的协同组合能够在多个平面以高时空分辨率可视化快速言语。《磁共振医学》77:112 - 125, 2017。© 2016威利期刊公司。

相似文献

1
A fast and flexible MRI system for the study of dynamic vocal tract shaping.
Magn Reson Med. 2017 Jan;77(1):112-125. doi: 10.1002/mrm.26090. Epub 2016 Jan 17.
2
3D dynamic MRI of the vocal tract during natural speech.
Magn Reson Med. 2019 Mar;81(3):1511-1520. doi: 10.1002/mrm.27570. Epub 2018 Nov 3.
4
High-frame-rate full-vocal-tract 3D dynamic speech imaging.
Magn Reson Med. 2017 Apr;77(4):1619-1629. doi: 10.1002/mrm.26248. Epub 2016 Apr 21.
5
Dynamic 3-D visualization of vocal tract shaping during speech.
IEEE Trans Med Imaging. 2013 May;32(5):838-48. doi: 10.1109/TMI.2012.2230017. Epub 2012 Nov 27.
6
Improved imaging of lingual articulation using real-time multislice MRI.
J Magn Reson Imaging. 2012 Apr;35(4):943-8. doi: 10.1002/jmri.23510. Epub 2011 Nov 29.
8
A flexible 16-channel custom coil array for accelerated imaging of upper and infraglottic airway at 3 T.
Magn Reson Med. 2023 May;89(5):2117-2130. doi: 10.1002/mrm.29559. Epub 2022 Dec 9.
9
Improved 3D real-time MRI of speech production.
Magn Reson Med. 2021 Jun;85(6):3182-3195. doi: 10.1002/mrm.28651. Epub 2021 Jan 15.
10
Dynamic off-resonance correction for spiral real-time MRI of speech.
Magn Reson Med. 2019 Jan;81(1):234-246. doi: 10.1002/mrm.27373. Epub 2018 Jul 29.

引用本文的文献

1
Vertical larynx actions and intergestural timing stability in Hausa ejectives and implosives.
Phonetica. 2024 Oct 22;81(6):559-597. doi: 10.1515/phon-2023-0052. Print 2024 Dec 17.
2
Real-time speech MRI datasets with corresponding articulator ground-truth segmentations.
Sci Data. 2023 Dec 2;10(1):860. doi: 10.1038/s41597-023-02766-z.
5
Realistic Dynamic Numerical Phantom for MRI of the Upper Vocal Tract.
J Imaging. 2020 Aug 27;6(9):86. doi: 10.3390/jimaging6090086.
7
Optimizing constrained reconstruction in magnetic resonance imaging for signal detection.
Phys Med Biol. 2021 Jul 16;66(14). doi: 10.1088/1361-6560/ac1021.
8
Aliasing artifact reduction in spiral real-time MRI.
Magn Reson Med. 2021 Aug;86(2):916-925. doi: 10.1002/mrm.28746. Epub 2021 Mar 16.
9
Real-Time Magnetic Resonance Imaging.
J Magn Reson Imaging. 2022 Jan;55(1):81-99. doi: 10.1002/jmri.27411. Epub 2020 Dec 9.
10
Deblurring for spiral real-time MRI using convolutional neural networks.
Magn Reson Med. 2020 Dec;84(6):3438-3452. doi: 10.1002/mrm.28393. Epub 2020 Jul 25.

本文引用的文献

1
Recommendations for real-time speech MRI.
J Magn Reson Imaging. 2016 Jan;43(1):28-44. doi: 10.1002/jmri.24997. Epub 2015 Jul 14.
2
High-speed real-time magnetic resonance imaging of fast tongue movements in elite horn players.
Quant Imaging Med Surg. 2015 Jun;5(3):374-81. doi: 10.3978/j.issn.2223-4292.2015.03.02.
3
Real-time MRI comparisons of brass players: A methodological pilot study.
Hum Mov Sci. 2015 Aug;42:132-45. doi: 10.1016/j.humov.2015.04.013. Epub 2015 May 28.
4
Acceleration of MRI of the vocal tract provides additional insight into articulator modifications.
J Magn Reson Imaging. 2015 Oct;42(4):925-35. doi: 10.1002/jmri.24857. Epub 2015 Feb 3.
6
High-resolution dynamic speech imaging with joint low-rank and sparsity constraints.
Magn Reson Med. 2015 May;73(5):1820-32. doi: 10.1002/mrm.25302. Epub 2014 Jun 9.
7
Speech MRI: morphology and function.
Phys Med. 2014 Sep;30(6):604-18. doi: 10.1016/j.ejmp.2014.05.001. Epub 2014 May 28.
8
Evaluation of swallow function after tongue cancer treatment using real-time magnetic resonance imaging: a pilot study.
JAMA Otolaryngol Head Neck Surg. 2013 Dec;139(12):1312-9. doi: 10.1001/jamaoto.2013.5444.
10
Using MRI for assessing velopharyngeal structures and function.
Cleft Palate Craniofac J. 2014 Jul;51(4):476-85. doi: 10.1597/12-083. Epub 2013 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验