Suppr超能文献

暴露于百草枯诱导的氧化应激下的水生大型植物波喜荡草中的光化学变化和氧化损伤。

Photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa exposed to paraquat-induced oxidative stress.

作者信息

Moustakas Michael, Malea Paraskevi, Zafeirakoglou Aristi, Sperdouli Ilektra

机构信息

Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey.

Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

出版信息

Pestic Biochem Physiol. 2016 Jan;126:28-34. doi: 10.1016/j.pestbp.2015.07.003. Epub 2015 Jul 20.

Abstract

The non-selective herbicide paraquat (Pq) is being extensively used for broad-spectrum weed control. Through water runoff and due to its high water solubility it contaminates aquatic environments. Thus, the present study was carried out to investigate the photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa to short- (2h) and long-term (24h) exposure to 2, 20, 200 and 1000μM paraquat (Pq) toxicity by using chlorophyll fluorescence imaging and H2O2 real-time imaging. The effective quantum yield of PSII (ΦPSII) show a tendency to increase at 2μM Pq after 2h exposure, and increased significantly at 20 and 200μM Pq. Τhe maximum oxidative effect on C. nodosa leaves was observed 2h after exposure to 200μM Pq concentration when the highest increases of ΦPSII due to high electron transport rate (ETR) resulted in a significant increase of H2O2 production due to the lowest non-photochemical quenching (NPQ) that was not efficient to serve as a protective mechanism, resulting in photooxidation. Prolonged exposure (24h) to 200μM Pq resulted in a decreased ΦPSII not due to an increase of the photoprotective mechanism NPQ, but due to high quantum yield of non-regulated energy loss in PSII (ΦNO), resulting to the lowest fraction of open PSII reaction centers (qp). This decreased ΦPSII has resulted to less Pq radicals to be formed, with a consequence of a small increase of H2O2 production compared to control C. nodosa leaves, but substantial lower than that of 2h exposure to 200μM Pq. Exposure of C. nodosa leaves to 1000μM Pq toxicity had lower effects on the efficiency of photochemical reactions of photosynthesis under both short- (2h) and long-term (24h) exposure than 200μM Pq. This was evident by an almost unchanged ΦPSII and qp, that remained unchanged even at a longer exposure time (48h), compared to control C. nodosa leaves. Thus, the response of C. nodosa leaves to Pq toxicity fits the "Threshold for Tolerance Model", with a threshold concentration of 200μM Pq required for initiation of a tolerance mechanism, by increasing H2O2 production for the induction of genes encoding protective processes in response to Pq-induced oxidative stress. Overall, it is concluded that chlorophyll fluorescence imaging constitutes a promising basis for investigating herbicide mode of action in aquatic plants and for detecting their protective mechanisms.

摘要

非选择性除草剂百草枯(Pq)被广泛用于广谱除草。通过径流以及因其高水溶性,它会污染水生环境。因此,本研究通过叶绿素荧光成像和H2O2实时成像,来研究水生大型植物结节藻(Cymodocea nodosa)在短期(2小时)和长期(24小时)暴露于2、20、200和1000μM百草枯(Pq)毒性下的光化学变化和氧化损伤。PSII的有效量子产率(ΦPSII)在暴露2小时后,在2μM Pq时呈现增加趋势,在20和200μM Pq时显著增加。在暴露于200μM Pq浓度2小时后,观察到对结节藻叶片的最大氧化效应,此时由于高电子传递速率(ETR)导致的ΦPSII的最高增加,因最低的非光化学猝灭(NPQ)不能有效作为保护机制而导致H2O2产生显著增加,从而导致光氧化。长时间(24小时)暴露于200μM Pq导致ΦPSII降低,这不是由于光保护机制NPQ的增加,而是由于PSII中非调节能量损失的高量子产率(ΦNO),导致开放PSII反应中心的比例(qp)最低。这种降低的ΦPSII导致形成的Pq自由基减少,与对照结节藻叶片相比,H2O2产生略有增加,但远低于暴露于200μM Pq 2小时的情况。在短期(2小时)和长期(24小时)暴露下,结节藻叶片暴露于1000μM Pq毒性对光合作用光化学反应效率的影响低于200μM Pq。与对照结节藻叶片相比,这通过几乎不变的ΦPSII和qp明显体现出来,即使在更长的暴露时间(48小时)下它们也保持不变。因此,结节藻叶片对Pq毒性的响应符合“耐受阈值模型”,启动耐受机制所需的阈值浓度为200μM Pq,即通过增加H2O2产生来诱导编码响应Pq诱导的氧化应激的保护过程的基因。总体而言,得出的结论是,叶绿素荧光成像为研究水生植物中除草剂的作用模式和检测其保护机制构成了一个有前景的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验