Suppr超能文献

用于肿瘤坏死检测的自适应单光子发射计算机断层扫描

Adaptive SPECT for Tumor Necrosis Detection.

作者信息

Caucci Luca, Kupinski Matthew A, Freed Melanie, Furenlid Lars R, Wilson Donald W, Barrett Harrison H

机构信息

College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, Arizona. 85721 and also with the Center for Gamma-Ray Imaging, University of Arizona, 1609 N. Warren Ave., Tucson, Arizona 85719.

U.S. Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, Maryland 20993.

出版信息

IEEE Nucl Sci Symp Conf Rec (1997). 2008 Oct;2008:5548-5551. doi: 10.1109/NSSMIC.2008.4774505.

Abstract

In this paper, we consider a prototype of an adaptive SPECT system, and we use simulation to objectively assess the system's performance with respect to a conventional, non-adaptive SPECT system. Objective performance assessment is investigated for a clinically relevant task: the detection of tumor necrosis at a known location and in a random lumpy background. The iterative maximum-likelihood expectation-maximization (MLEM) algorithm is used to perform image reconstruction. We carried out human observer studies on the reconstructed images and compared the probability of correct detection when the data are generated with the adaptive system as opposed to the non-adaptive system. Task performance is also assessed by using a channelized Hotelling observer, and the area under the receiver operating characteristic curve is the figure of merit for the detection task. Our results show a large performance improvement of adaptive systems versus non-adaptive systems and motivate further research in adaptive medical imaging.

摘要

在本文中,我们考虑一种自适应单光子发射计算机断层扫描(SPECT)系统的原型,并使用模拟来客观评估该系统相对于传统非自适应SPECT系统的性能。针对一项临床相关任务研究了客观性能评估:在已知位置且处于随机块状背景下检测肿瘤坏死。使用迭代最大似然期望最大化(MLEM)算法进行图像重建。我们对重建图像进行了人体观察者研究,并比较了使用自适应系统而非非自适应系统生成数据时的正确检测概率。还通过使用通道化的霍特林观察者评估任务性能,并且接收者操作特征曲线下的面积是检测任务的品质因数。我们的结果表明,与非自适应系统相比,自适应系统的性能有大幅提升,并推动了对自适应医学成像的进一步研究。

相似文献

1
Adaptive SPECT for Tumor Necrosis Detection.
IEEE Nucl Sci Symp Conf Rec (1997). 2008 Oct;2008:5548-5551. doi: 10.1109/NSSMIC.2008.4774505.
2
Effect of varying number of OSEM subsets on PET lesion detectability.
J Nucl Med Technol. 2013 Dec;41(4):268-73. doi: 10.2967/jnmt.113.131904. Epub 2013 Nov 12.
3
Numerical observer for atherosclerotic plaque classification in spectral computed tomography.
J Med Imaging (Bellingham). 2016 Jul;3(3):035501. doi: 10.1117/1.JMI.3.3.035501. Epub 2016 Jul 12.
5
Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT.
Phys Med Biol. 2015 Apr 7;60(7):2751-63. doi: 10.1088/0031-9155/60/7/2751. Epub 2015 Mar 13.
9
Task Equivalence for Model and Human-Observer Comparisons in SPECT Localization Studies.
IEEE Trans Nucl Sci. 2016 Jun;63(3):1426-1434. doi: 10.1109/TNS.2016.2542042. Epub 2016 May 19.
10
Investigating the limited performance of a deep-learning-based SPECT denoising approach: An observer-study-based characterization.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12035. doi: 10.1117/12.2613134. Epub 2022 Apr 4.

引用本文的文献

1
The AdaptiSPECT Imaging Aperture.
IEEE Nucl Sci Symp Conf Rec (1997). 2012 Oct-Nov;2012:3564-3567. doi: 10.1109/NSSMIC.2012.6551816.
2
Design and Validation of an Adaptive SPECT System: AdaptiSPECT.
IEEE Nucl Sci Symp Conf Rec (1997). 2010;2010:2539-2544. doi: 10.1109/NSSMIC.2010.5874245. Epub 2010 Oct 30.
3
Integration of AdaptiSPECT, a small-animal adaptive SPECT imaging system.
Proc SPIE Int Soc Opt Eng. 2013 Aug 25;8853. doi: 10.1117/12.2029768.

本文引用的文献

2
A prototype instrument for single pinhole small animal adaptive SPECT imaging.
Med Phys. 2008 May;35(5):1912-25. doi: 10.1118/1.2896072.
3
Adaptive SPECT.
IEEE Trans Med Imaging. 2008 Jun;27(6):775-88. doi: 10.1109/TMI.2007.913241.
4
One-shot estimate of MRMC variance: AUC.
Acad Radiol. 2006 Mar;13(3):353-62. doi: 10.1016/j.acra.2005.11.030.
5
Receiver operating characteristic curves and their use in radiology.
Radiology. 2003 Oct;229(1):3-8. doi: 10.1148/radiol.2291010898.
6
Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability.
J Opt Soc Am A Opt Image Sci Vis. 2001 Mar;18(3):473-88. doi: 10.1364/josaa.18.000473.
7
Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology.
Eur J Radiol. 1998 May;27(2):88-94. doi: 10.1016/s0720-048x(97)00157-5.
8
The meaning and use of the area under a receiver operating characteristic (ROC) curve.
Radiology. 1982 Apr;143(1):29-36. doi: 10.1148/radiology.143.1.7063747.
10
Addition of a channel mechanism to the ideal-observer model.
J Opt Soc Am A. 1987 Dec;4(12):2447-57. doi: 10.1364/josaa.4.002447.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验