Mingote Susana, Masson Justine, Gellman Celia, Thomsen Gretchen M, Lin Chyuan-Sheng, Merker Robert J, Gaisler-Salomon Inna, Wang Yvonne, Ernst Rachel, Hen René, Rayport Stephen
Department of Psychiatry, Columbia UniversityNew York, NY, USA; Department of Molecular Therapeutics, New York State Psychiatric InstituteNew York, NY, USA.
Department of Psychiatry, Columbia UniversityNew York, NY, USA; Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR 894 and Université Paris DescartesParis, France.
Front Syst Neurosci. 2016 Jan 8;9:165. doi: 10.3389/fnsys.2015.00165. eCollection 2015.
Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to ask whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAG(ERT2cre∕+) mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction-mimicking pharmacological inhibition-strongly attenuated the response to a propsychotic challenge, suggesting that glutaminase may be a novel target for the pharmacotherapy of schizophrenia. These results demonstrate how genetic pharmacotherapy can be implemented to test a CNS target in advance of the development of specific neuroactive inhibitors. We discuss further the advantages, limitations, and feasibility of the wider application of genetic pharmacotherapy for neuropsychiatric drug development.
基因药物疗法是一种早期药物开发策略,用于在开发特异性配体之前在小鼠模型中鉴定新的中枢神经系统靶点。在此,我们首次实施了这一策略,以探讨基于谷氨酸的药物疗法对精神分裂症的潜在治疗价值,该疗法涉及抑制谷氨酸循环酶磷酸激活型谷氨酰胺酶。编码谷氨酰胺酶的基因GLS1组成型杂合的小鼠表现出精神分裂症恢复力表型,其中一个关键方面是对致精神病性苯丙胺激发的运动反应减弱。如果恢复力是由于成年期谷氨酰胺酶缺乏所致,那么谷氨酰胺酶抑制剂应具有治疗潜力。然而,鉴于缺乏神经活性谷氨酰胺酶抑制剂,这一点很难进行测试。因此,我们采用基因药物疗法来探究成年期诱导GLS1杂合性是否会减弱对苯丙胺的反应性。我们构建了条件性floxGLS1小鼠,并将它们与全身性CAG(ERT2cre∕+)小鼠杂交,以产生GLS1 iHET小鼠,这类小鼠易受他莫昔芬诱导产生GLS1杂合性。在成年GLS1 iHET小鼠接受他莫昔芬治疗一个月后,我们发现大脑中GLS1等位基因丰度和谷氨酰胺酶mRNA水平降低了50%。虽然GLS1 iHET小鼠在接受他莫昔芬治疗前就出现了一些重组,但对mRNA水平没有影响。然后,我们探究诱导GLS杂合性是否会减弱对致精神病性苯丙胺激发的运动反应。在接受他莫昔芬治疗前,对照小鼠和GLS1 iHET小鼠对苯丙胺的反应没有差异。在接受他莫昔芬治疗一个月后,GLS1 iHET小鼠中苯丙胺诱导的运动亢进受到了抑制。这种抑制在5个月后基本保持。因此,基因诱导的谷氨酰胺酶减少(模拟药理学抑制)强烈减弱了对致精神病性激发的反应,这表明谷氨酰胺酶可能是精神分裂症药物治疗的一个新靶点。这些结果证明了如何在开发特异性神经活性抑制剂之前采用基因药物疗法来测试一个中枢神经系统靶点。我们进一步讨论了基因药物疗法在神经精神药物开发中更广泛应用的优势、局限性和可行性。