Suppr超能文献

使用贝叶斯方法改进和扩展麦克尼马尔检验

Improving and extending the McNemar test using the Bayesian method.

作者信息

Ogura Toru, Yanagimoto Takemi

机构信息

Mie University Hospital, 2-174, Edobashi, Tsu City, 514-8507, Mie, Japan.

Institute of Statistical Mathematics, 10-3, Midorimachi, Tachikawa City, 190-8562, Tokyo, Japan.

出版信息

Stat Med. 2016 Jun 30;35(14):2455-66. doi: 10.1002/sim.6875. Epub 2016 Jan 18.

Abstract

The well-known McNemar test assesses the difference between two correlated proportions in binary matched-pairs data. To improve the power of the McNemar test and extend it to related problems, we reinterpret the test in a Bayesian framework. Replacing the prior density by a more realistic one realizes a powerful test. We numerically investigate different choices of the prior density, which strongly affects the performance of the derived test. Furthermore, we compare the maximum actual levels of the proposed test with those of existing tests. The proposed test is advantageous for its wide extendibility. We combine the evidence from multiple strata by an approach that largely differs from existing methods. The test statistic is the product of the posterior probabilities of the alternative models in the multiple strata. The proposed test is validated in practical examples. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

著名的 McNemar 检验用于评估二元匹配对数据中两个相关比例之间的差异。为了提高 McNemar 检验的功效并将其扩展到相关问题,我们在贝叶斯框架下重新解释该检验。用更现实的先验密度替换先验密度可实现强大的检验。我们通过数值研究先验密度的不同选择,这对导出检验的性能有很大影响。此外,我们将所提出检验的最大实际水平与现有检验的水平进行比较。所提出的检验因其广泛的可扩展性而具有优势。我们通过一种与现有方法有很大不同的方法来合并来自多个层次的证据。检验统计量是多个层次中备择模型后验概率的乘积。所提出的检验在实际例子中得到了验证。版权所有 © 2016 约翰威立父子有限公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验