Suppr超能文献

贝叶斯 bootstrap 法评估贝叶斯功效。

Assessment of Bayesian expected power via Bayesian bootstrap.

机构信息

Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, 46556, USA.

出版信息

Stat Med. 2018 Oct 30;37(24):3471-3485. doi: 10.1002/sim.7826. Epub 2018 Jun 25.

Abstract

The Bayesian expected power (BEP) has become increasingly popular in assessing the probability of success for a future trial. While the traditional power assumes a single value for the unknown effect size Δ and is thus highly dependent on the assumed value, the BEP embraces the uncertainty around Δ given the prior information and is therefore a less subjective measure for the probability of success than the traditional power especially when the prior information is not rich. Current methods for assessing BEP are often based in a parametric framework by imposing a model on the pilot data to derive and sample from the posterior distributions of Δ. The model-based approach can be analytically challenging and computationally costly especially for multivariate data sets, and it also runs the risk of generating misleading BEP if the model is misspecified. We propose an approach based on the Bayesian bootstrap (BBS) technique to simulate future trials in the presence of individual-level pilot data, based on which the empirical BEP can be calculated. The BBS approach is model-free with no assumptions about the distribution of the prior data and also circumvents the analytical and computational complexity associated with obtaining the posterior distribution of the Δ. Information from multiple pilot studies is also straightforward to combine. We also propose the double bootstrap technique, a frequentist counterpart to the BBS, that shares similar properties and achieves the same goal as the BBS for BEP assessment. Simulation and case studies are presented to demonstrate the implementation of the BBS technique and the double bootstrap technique and to compare the BEP results with model-based approach.

摘要

贝叶斯期望功效(BEP)在评估未来试验成功的概率方面变得越来越受欢迎。虽然传统功效假设未知效应大小Δ只有一个单一的值,因此高度依赖于假设值,但 BEP 则在给定先验信息的情况下接受Δ的不确定性,因此,与传统功效相比,BEP 是一种对成功概率的主观程度较低的衡量方法,特别是当先验信息不丰富时。当前评估 BEP 的方法通常基于参数框架,即在试点数据上施加模型,从Δ的后验分布中导出和采样。基于模型的方法在处理多维数据集时可能具有分析上的挑战性和计算上的高成本,并且如果模型指定不当,也存在生成误导性 BEP 的风险。我们提出了一种基于贝叶斯引导抽样(BBS)技术的方法,用于在存在个体试点数据的情况下模拟未来的试验,基于该方法可以计算经验 BEP。BBS 方法是无模型的,对先验数据的分布没有任何假设,并且还避免了与获得Δ的后验分布相关的分析和计算复杂性。还可以轻松地组合来自多个试点研究的信息。我们还提出了双重引导抽样技术,这是 BBS 的一个频率学对应方法,它具有相似的性质,并为 BEP 评估实现与 BBS 相同的目标。模拟和案例研究用于演示 BBS 技术和双重引导抽样技术的实施,并比较 BEP 结果与基于模型的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验