Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science & Technology of China, Hefei, Anhui 230026 (P. R. China).
Angew Chem Int Ed Engl. 2016 Jan 11;55(2):698-702. doi: 10.1002/anie.201509800. Epub 2015 Nov 24.
Electroreduction of CO2 into hydrocarbons could contribute to alleviating energy crisis and global warming. However, conventional electrocatalysts usually suffer from low energetic efficiency and poor durability. Herein, atomic layers for transition-metal oxides are proposed to address these problems through offering an ultralarge fraction of active sites, high electronic conductivity, and superior structural stability. As a prototype, 1.72 and 3.51 nm thick Co3O4 layers were synthesized through a fast-heating strategy. The atomic thickness endowed Co3O4 with abundant active sites, ensuring a large CO2 adsorption amount. The increased and more dispersed charge density near Fermi level allowed for enhanced electronic conductivity. The 1.72 nm thick Co3O4 layers showed over 1.5 and 20 times higher electrocatalytic activity than 3.51 nm thick Co3O4 layers and bulk counterpart, respectively. Also, 1.72 nm thick Co3O4 layers showed formate Faradaic efficiency of over 60% in 20 h.
二氧化碳电化学还原为碳氢化合物有助于缓解能源危机和全球变暖。然而,传统电催化剂通常存在能量效率低和耐久性差的问题。本文通过提供大量的活性位、高导电性和优越的结构稳定性,提出了原子层过渡金属氧化物来解决这些问题。作为一个原型,通过快速加热策略合成了 1.72 和 3.51nm 厚的 Co3O4 层。原子层赋予 Co3O4 丰富的活性位,确保了大量的 CO2 吸附量。费米能级附近增加且更分散的电荷密度允许增强电子导电性。1.72nm 厚的 Co3O4 层的电催化活性分别比 3.51nm 厚的 Co3O4 层和体相高出 1.5 倍和 20 倍以上。此外,在 20 小时内,1.72nm 厚的 Co3O4 层的甲酸法拉第效率超过 60%。