Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science & Technology of China, Hefei, Anhui 230026 (P.R. China).
Angew Chem Int Ed Engl. 2015 Nov 16;54(47):13971-4. doi: 10.1002/anie.201506966. Epub 2015 Sep 30.
Solar CO2 reduction into hydrocarbons helps to solve the global warming and energy crisis. However, conventional semiconductors usually suffer from low photoactivity and poor photostability. Here, atomically-thin oxide-based semiconductors are proposed as excellent platforms to overcome this drawback. As a prototype, single-unit-cell Bi2WO6 layers are first synthesized by virtue of a lamellar Bi-oleate intermediate. The single-unit-cell thickness allows 3-times larger CO2 adsorption capacity and higher photoabsorption than bulk Bi2WO6. Also, the increased conductivity, verified by density functional theory calculations and temperature-dependent resistivities, favors fast carrier transport. The carrier lifetime increased from 14.7 to 83.2 ns, revealed by time-resolved fluorescence spectroscopy, which accounts for the improved electron-hole separation efficacy. As a result, the single-unit-cell Bi2WO6 layers achieve a methanol formation rate of 75 μmol g(-1) h(-1), 125-times higher than that of bulk Bi2WO6. The catalytic activity of the single-unit-cell layers proceeds without deactivation even after 2 days. This work will shed light on designing efficient and robust photoreduction CO2 catalysts.
太阳能将二氧化碳转化为碳氢化合物有助于解决全球变暖和能源危机。然而,传统半导体通常存在光活性低和光稳定性差的问题。在这里,原子层状的氧化物半导体被提出作为克服这一缺点的优秀平台。作为一个原型,首先通过层状 Bi-油酸中间体制备了单层厚度的 Bi2WO6 层。单层厚度允许 CO2 吸附容量增加 3 倍,光吸收率高于体相 Bi2WO6。此外,通过密度泛函理论计算和温度相关电阻率验证的电导率增加有利于快速载流子输运。通过时间分辨荧光光谱测量,载流子寿命从 14.7 ns 增加到 83.2 ns,这表明电子-空穴分离效率得到了提高。结果,单层 Bi2WO6 层的甲醇生成速率达到 75 μmol g(-1) h(-1),是体相 Bi2WO6 的 125 倍。即使经过 2 天,单层厚度的催化剂也没有失活,仍然保持着催化活性。这项工作将为设计高效、稳定的光还原 CO2 催化剂提供思路。