Gong Guohua, Song Moshi, Csordas Gyorgy, Kelly Daniel P, Matkovich Scot J, Dorn Gerald W
Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Science. 2015 Dec 4;350(6265):aad2459. doi: 10.1126/science.aad2459. Epub 2015 Dec 3.
In developing hearts, changes in the cardiac metabolic milieu during the perinatal period redirect mitochondrial substrate preference from carbohydrates to fatty acids. Mechanisms responsible for this mitochondrial plasticity are unknown. Here, we found that PINK1-Mfn2-Parkin-mediated mitophagy directs this metabolic transformation in mouse hearts. A mitofusin (Mfn) 2 mutant lacking PINK1 phosphorylation sites necessary for Parkin binding (Mfn2 AA) inhibited mitochondrial Parkin translocation, suppressing mitophagy without impairing mitochondrial fusion. Cardiac Parkin deletion or expression of Mfn2 AA from birth, but not after weaning, prevented postnatal mitochondrial maturation essential to survival. Five-week-old Mfn2 AA hearts retained a fetal mitochondrial transcriptional signature without normal increases in fatty acid metabolism and mitochondrial biogenesis genes. Myocardial fatty acylcarnitine levels and cardiomyocyte respiration induced by palmitoylcarnitine were concordantly depressed. Thus, instead of transcriptional reprogramming, fetal cardiomyocyte mitochondria undergo perinatal Parkin-mediated mitophagy and replacement by mature adult mitochondria. Mitophagic mitochondrial removal underlies developmental cardiomyocyte mitochondrial plasticity and metabolic transitioning of perinatal hearts.
在发育中的心脏中,围产期心脏代谢环境的变化会使线粒体的底物偏好从碳水化合物转向脂肪酸。导致这种线粒体可塑性的机制尚不清楚。在这里,我们发现PINK1-Mfn2-Parkin介导的线粒体自噬指导小鼠心脏的这种代谢转变。一种缺乏与Parkin结合所需的PINK1磷酸化位点的线粒体融合蛋白(Mfn)2突变体(Mfn2 AA)抑制了线粒体Parkin易位,抑制了线粒体自噬,而不损害线粒体融合。从出生时而非断奶后开始删除心脏中的Parkin或表达Mfn2 AA,会阻止对生存至关重要的出生后线粒体成熟。五周龄的Mfn2 AA心脏保留了胎儿线粒体转录特征,而脂肪酸代谢和线粒体生物发生基因没有正常增加。棕榈酰肉碱诱导的心肌脂肪酰肉碱水平和心肌细胞呼吸也相应降低。因此,胎儿心肌细胞线粒体不是通过转录重编程,而是在围产期经历Parkin介导的线粒体自噬,并被成熟的成年线粒体所取代。线粒体自噬性清除是发育中心肌细胞线粒体可塑性和围产期心脏代谢转变的基础。