Suppr超能文献

帕金蛋白介导的线粒体自噬指导小鼠围产期心脏代谢成熟。

Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice.

作者信息

Gong Guohua, Song Moshi, Csordas Gyorgy, Kelly Daniel P, Matkovich Scot J, Dorn Gerald W

机构信息

Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.

Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.

出版信息

Science. 2015 Dec 4;350(6265):aad2459. doi: 10.1126/science.aad2459. Epub 2015 Dec 3.

Abstract

In developing hearts, changes in the cardiac metabolic milieu during the perinatal period redirect mitochondrial substrate preference from carbohydrates to fatty acids. Mechanisms responsible for this mitochondrial plasticity are unknown. Here, we found that PINK1-Mfn2-Parkin-mediated mitophagy directs this metabolic transformation in mouse hearts. A mitofusin (Mfn) 2 mutant lacking PINK1 phosphorylation sites necessary for Parkin binding (Mfn2 AA) inhibited mitochondrial Parkin translocation, suppressing mitophagy without impairing mitochondrial fusion. Cardiac Parkin deletion or expression of Mfn2 AA from birth, but not after weaning, prevented postnatal mitochondrial maturation essential to survival. Five-week-old Mfn2 AA hearts retained a fetal mitochondrial transcriptional signature without normal increases in fatty acid metabolism and mitochondrial biogenesis genes. Myocardial fatty acylcarnitine levels and cardiomyocyte respiration induced by palmitoylcarnitine were concordantly depressed. Thus, instead of transcriptional reprogramming, fetal cardiomyocyte mitochondria undergo perinatal Parkin-mediated mitophagy and replacement by mature adult mitochondria. Mitophagic mitochondrial removal underlies developmental cardiomyocyte mitochondrial plasticity and metabolic transitioning of perinatal hearts.

摘要

在发育中的心脏中,围产期心脏代谢环境的变化会使线粒体的底物偏好从碳水化合物转向脂肪酸。导致这种线粒体可塑性的机制尚不清楚。在这里,我们发现PINK1-Mfn2-Parkin介导的线粒体自噬指导小鼠心脏的这种代谢转变。一种缺乏与Parkin结合所需的PINK1磷酸化位点的线粒体融合蛋白(Mfn)2突变体(Mfn2 AA)抑制了线粒体Parkin易位,抑制了线粒体自噬,而不损害线粒体融合。从出生时而非断奶后开始删除心脏中的Parkin或表达Mfn2 AA,会阻止对生存至关重要的出生后线粒体成熟。五周龄的Mfn2 AA心脏保留了胎儿线粒体转录特征,而脂肪酸代谢和线粒体生物发生基因没有正常增加。棕榈酰肉碱诱导的心肌脂肪酰肉碱水平和心肌细胞呼吸也相应降低。因此,胎儿心肌细胞线粒体不是通过转录重编程,而是在围产期经历Parkin介导的线粒体自噬,并被成熟的成年线粒体所取代。线粒体自噬性清除是发育中心肌细胞线粒体可塑性和围产期心脏代谢转变的基础。

相似文献

1
Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice.
Science. 2015 Dec 4;350(6265):aad2459. doi: 10.1126/science.aad2459. Epub 2015 Dec 3.
2
Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts.
Circ Res. 2015 Jul 31;117(4):346-51. doi: 10.1161/CIRCRESAHA.117.306859. Epub 2015 Jun 2.
3
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria.
Science. 2013 Apr 26;340(6131):471-5. doi: 10.1126/science.1231031.
4
Jurassic PARK2: You eat your mitochondria, and you are what your mitochondria eat.
Autophagy. 2016;12(3):610-1. doi: 10.1080/15548627.2016.1143210.
5
Parkin-dependent mitophagy in the heart.
J Mol Cell Cardiol. 2016 Jun;95:42-9. doi: 10.1016/j.yjmcc.2015.11.023. Epub 2015 Nov 22.
6
Central Parkin: The evolving role of Parkin in the heart.
Biochim Biophys Acta. 2016 Aug;1857(8):1307-1312. doi: 10.1016/j.bbabio.2016.03.014. Epub 2016 Mar 16.
7
Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin.
Circ Res. 2014 Jan 17;114(2):257-65. doi: 10.1161/CIRCRESAHA.114.302734. Epub 2013 Nov 5.
8
Ubiquitin Ligase RBX2/SAG Regulates Mitochondrial Ubiquitination and Mitophagy.
Circ Res. 2024 Jul 19;135(3):e39-e56. doi: 10.1161/CIRCRESAHA.124.324285. Epub 2024 Jun 14.
9
Parkin is required for exercise-induced mitophagy in muscle: impact of aging.
Am J Physiol Endocrinol Metab. 2018 Sep 1;315(3):E404-E415. doi: 10.1152/ajpendo.00391.2017. Epub 2018 May 29.
10
Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility.
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):E6097-E6106. doi: 10.1073/pnas.1612283113. Epub 2016 Sep 27.

引用本文的文献

1
Parkin inhibits iron overload-induced cardiomyocyte ferroptosis by ubiquitinating ACSL4 and modulating PUFA-phospholipids metabolism.
Acta Pharm Sin B. 2025 Mar;15(3):1589-1607. doi: 10.1016/j.apsb.2024.12.027. Epub 2025 Jan 2.
2
DUT (p.Y116C)-Mutation-Induced Thrombocytopenia in Rabbits.
Int J Mol Sci. 2025 Apr 28;26(9):4169. doi: 10.3390/ijms26094169.
3
Programmed mitophagy at the oocyte-to-zygote transition promotes species immortality.
Res Sq. 2025 Apr 9:rs.3.rs-6330979. doi: 10.21203/rs.3.rs-6330979/v1.
4
Identification of mitophagy-related genes in patients with acute myocardial infarction.
Hereditas. 2025 Apr 26;162(1):70. doi: 10.1186/s41065-025-00424-5.
5
Thermogenesis and Energy Metabolism in Brown Adipose Tissue in Animals Experiencing Cold Stress.
Int J Mol Sci. 2025 Mar 31;26(7):3233. doi: 10.3390/ijms26073233.
6
Autophagy in adult stem cell homeostasis, aging, and disease therapy.
Cell Regen. 2025 Apr 10;14(1):14. doi: 10.1186/s13619-025-00224-2.
7
Developmental mitochondrial complex I activity determines lifespan.
EMBO Rep. 2025 Apr;26(8):1957-1983. doi: 10.1038/s44319-025-00416-6. Epub 2025 Mar 17.
9
Alterations of PINK1-PRKN signaling in mice during normal aging.
Autophagy Rep. 2024;3(1). doi: 10.1080/27694127.2024.2434379. Epub 2024 Dec 7.
10

本文引用的文献

1
Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts.
Circ Res. 2015 Jul 31;117(4):346-51. doi: 10.1161/CIRCRESAHA.117.306859. Epub 2015 Jun 2.
2
How mitochondrial dynamism orchestrates mitophagy.
Circ Res. 2015 May 22;116(11):1835-49. doi: 10.1161/CIRCRESAHA.116.306374.
3
Mitochondrial dynamism and heart disease: changing shape and shaping change.
EMBO Mol Med. 2015 Jul;7(7):865-77. doi: 10.15252/emmm.201404575.
4
Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy.
Methods Mol Biol. 2015;1299:27-49. doi: 10.1007/978-1-4939-2572-8_3.
5
6
Mitoconfusion: noncanonical functioning of dynamism factors in static mitochondria of the heart.
Cell Metab. 2015 Feb 3;21(2):195-205. doi: 10.1016/j.cmet.2014.12.019.
7
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease.
Neuron. 2015 Jan 21;85(2):257-73. doi: 10.1016/j.neuron.2014.12.007.
8
Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain.
EMBO J. 2014 Dec 1;33(23):2798-813. doi: 10.15252/embj.201488658. Epub 2014 Oct 27.
9
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs.
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12264-9. doi: 10.1073/pnas.1410622111. Epub 2014 Jul 28.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验