Du Yingge, Li Guoqiang, Peterson Erik W, Zhou Jing, Zhang Xin, Mu Rentao, Dohnálek Zdenek, Bowden Mark, Lyubinetsky Igor, Chambers Scott A
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352 USA.
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352 USA and Key Laboratory of Photovoltaic Materials of Henan Province, School of Physics & Electronics, Henan University, Kaifeng, 475004 P. R. China.
Nanoscale. 2016 Feb 7;8(5):3119-24. doi: 10.1039/c5nr07745a.
The ability to synthesize well-ordered two-dimensional materials under ultra-high vacuum and directly characterize them by other techniques in situ can greatly advance our current understanding on their physical and chemical properties. In this paper, we demonstrate that iso-oriented α-MoO3 films with as low as single monolayer thickness can be reproducibly grown on SrTiO3(001) substrates by molecular beam epitaxy ((010)(MoO3)‖(001)(STO), 100‖100 or 010) through a self-limiting process. While one in-plane lattice parameter of the MoO3 is very close to that of the SrTiO3 (a(MoO3) = 3.96 Å, a(STO) = 3.905 Å), the lattice mismatch along other direction is large (∼5%, c(MoO3) = 3.70 Å), which leads to relaxation as clearly observed from the splitting of streaks in reflection high-energy electron diffraction (RHEED) patterns. A narrow range in the growth temperature is found to be optimal for the growth of monolayer α-MoO3 films. Increasing deposition time will not lead to further increase in thickness, which is explained by a balance between deposition and thermal desorption due to the weak van der Waals force between α-MoO3 layers. Lowering growth temperature after the initial iso-oriented α-MoO3 monolayer leads to thicker α-MoO3(010) films with excellent crystallinity.
在超高真空下合成有序二维材料并通过其他技术原位直接表征它们的能力,能够极大地推动我们目前对其物理和化学性质的理解。在本文中,我们证明了通过分子束外延((010)(MoO₃)‖(001)(STO),100‖100 或 010),可以通过自限过程在 SrTiO₃(001) 衬底上可重复地生长出低至单层厚度的等取向 α-MoO₃ 薄膜。虽然 MoO₃ 的一个面内晶格参数与 SrTiO₃ 的非常接近(a(MoO₃) = 3.96 Å,a(STO) = 3.905 Å),但沿其他方向的晶格失配很大(约 5%,c(MoO₃) = 3.70 Å),这导致了弛豫,从反射高能电子衍射(RHEED)图案中的条纹分裂可以清楚地观察到。发现生长温度的一个窄范围对于单层 α-MoO₃ 薄膜的生长是最佳的。增加沉积时间不会导致厚度进一步增加,这可以通过 α-MoO₃ 层之间弱范德华力导致的沉积与热脱附之间的平衡来解释。在初始等取向的 α-MoO₃ 单层之后降低生长温度会导致具有优异结晶度的更厚的 α-MoO₃(010) 薄膜。