Young Fletcher R, Chiel Hillel J, Tresch Matthew C, Heckman Charles J, Hunt Alexander J, Quinn Roger D
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
Biomimetics (Basel). 2022 Jan 20;7(1):17. doi: 10.3390/biomimetics7010017.
Animal locomotion is influenced by a combination of constituent joint torques (e.g., due to limb inertia and passive viscoelasticity), which determine the necessary muscular response to move the limb. Across animal size-scales, the relative contributions of these constituent joint torques affect the muscular response in different ways. We used a multi-muscle biomechanical model to analyze how passive torque components change due to an animal's size-scale during locomotion. By changing the size-scale of the model, we characterized emergent muscular responses at the hip as a result of the changing constituent torque profile. Specifically, we found that activation phases between extensor and flexor torques to be opposite between small and large sizes for the same kinematic motion. These results suggest general principles of how animal size affects neural control strategies. Our modeled torque profiles show a strong agreement with documented hindlimb torque during locomotion and can provide insights into the neural organization and muscle activation behavior of animals whose motion has not been extensively documented.
动物的运动受组成关节扭矩(例如,由于肢体惯性和被动粘弹性)组合的影响,这些扭矩决定了移动肢体所需的肌肉反应。在不同动物体型尺度上,这些组成关节扭矩的相对贡献以不同方式影响肌肉反应。我们使用多肌肉生物力学模型来分析在运动过程中,被动扭矩分量如何因动物体型尺度而变化。通过改变模型的体型尺度,我们表征了由于组成扭矩分布变化而在髋关节处出现的肌肉反应。具体而言,我们发现,对于相同的运动学运动,在小体型和大体型动物中,伸肌和屈肌扭矩之间的激活阶段是相反的。这些结果表明了动物体型如何影响神经控制策略的一般原理。我们模拟的扭矩分布与已记录的运动过程中的后肢扭矩高度一致,并且可以为那些运动未被广泛记录的动物的神经组织和肌肉激活行为提供见解。