Callaway David J E, Bu Zimei
Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, USA.
Methods Enzymol. 2016;566:253-70. doi: 10.1016/bs.mie.2015.05.011. Epub 2015 Jun 13.
Determining the internal motions of a protein on nanosecond-to-microsecond timescales and on nanometer length scales is challenging by experimental biophysical techniques. Neutron spin echo spectroscopy (NSE) offers a unique opportunity to determine such nanoscale protein domain motions. However, the major hurdle in applying NSE to determine nanoscale protein motion is that the time and length scales of internal protein motions tend to be comparable to that of the global motions of a protein. The signals detected by NSE tend to be dominated by rigid-body translational and rotational diffusion. Using theoretical analyses, our laboratory showed that selective deuteration of a protein domain or a subunit can enhance the capability of NSE to reveal the internal motions in a protein complex. Here, we discuss the essential theoretical analysis and experimental methodology in detail. Protein nanomachines are far more complex than any molecular motors that have been artificially constructed, and their skillful utilization likely represents the future of medicine. With selective deuteration, NSE will allow us to see these nanomachines in motion.
通过实验生物物理技术来确定蛋白质在纳秒到微秒时间尺度以及纳米长度尺度上的内部运动具有挑战性。中子自旋回波光谱学(NSE)为确定此类纳米尺度的蛋白质结构域运动提供了独特的机会。然而,应用NSE来确定纳米尺度蛋白质运动的主要障碍在于,蛋白质内部运动的时间和长度尺度往往与蛋白质整体运动的时间和长度尺度相当。NSE检测到的信号往往由刚体平移和旋转扩散主导。通过理论分析,我们实验室表明,对蛋白质结构域或亚基进行选择性氘代可以增强NSE揭示蛋白质复合物内部运动的能力。在此,我们详细讨论基本的理论分析和实验方法。蛋白质纳米机器比任何人工构建的分子马达都要复杂得多,巧妙地利用它们可能代表着医学的未来。通过选择性氘代,NSE将使我们能够看到这些纳米机器的运动。