Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom.
Stanford Synchrotron Radiation Light Source, Menlo Park, California.
Biophys J. 2018 Aug 21;115(4):642-654. doi: 10.1016/j.bpj.2018.07.005. Epub 2018 Jul 11.
As a core component of the adherens junction, α-catenin stabilizes the cadherin/catenin complexes to the actin cytoskeleton for the mechanical coupling of cell-cell adhesion. α-catenin also modulates actin dynamics, cell polarity, and cell-migration functions that are independent of the adherens junction. We have determined the solution structures of the α-catenin monomer and dimer using in-line size-exclusion chromatography small-angle X-ray scattering, as well as the structure of α-catenin dimer in complex to F-actin filament using selective deuteration and contrast-matching small angle neutron scattering. We further present the first observation, to our knowledge, of the nanoscale dynamics of α-catenin by neutron spin-echo spectroscopy, which explicitly reveals the mobile regions of α-catenin that are crucial for binding to F-actin. In solution, the α-catenin monomer is more expanded than either protomer shown in the crystal structure dimer, with the vinculin-binding M fragment and the actin-binding domain being able to adopt different configurations. The α-catenin dimer in solution is also significantly more expanded than the dimer crystal structure, with fewer interdomain and intersubunit contacts than the crystal structure. When in complex to F-actin, the α-catenin dimer has an even more open and extended conformation than in solution, with the actin-binding domain further separated from the main body of the dimer. The α-catenin-assembled F-actin bundle develops into an ordered filament packing arrangement at increasing α-catenin/F-actin molar ratios. Together, the structural and dynamic studies reveal that α-catenin possesses dynamic molecular conformations that prime this protein to function as a mechanosensor protein.
作为黏着连接的核心组成部分,α-连环蛋白将钙黏蛋白/连环蛋白复合物稳定到肌动蛋白细胞骨架上,以实现细胞间黏附的机械偶联。α-连环蛋白还调节肌动蛋白动力学、细胞极性和细胞迁移功能,这些功能独立于黏着连接。我们使用在线尺寸排阻色谱小角 X 射线散射,以及使用选择性氘代和对比匹配小角中子散射研究α-连环蛋白二聚体与 F-肌动蛋白丝复合物的结构,确定了α-连环蛋白单体和二聚体的溶液结构。我们还通过中子自旋回波光谱首次观察到α-连环蛋白的纳米级动力学,这明确揭示了α-连环蛋白与 F-肌动蛋白结合的关键移动区域。在溶液中,α-连环蛋白单体比晶体结构二聚体中的任何一个单体都更伸展,与衔接蛋白结合的 M 片段和与肌动蛋白结合的结构域能够采用不同的构象。在溶液中,α-连环蛋白二聚体也明显比晶体结构二聚体更伸展,与晶体结构相比,二聚体之间和亚基之间的相互作用更少。当与 F-肌动蛋白结合时,α-连环蛋白二聚体的构象比在溶液中更加开放和伸展,与肌动蛋白结合的结构域进一步与二聚体的主体分离。α-连环蛋白组装的 F-肌动蛋白束在增加α-连环蛋白/F-肌动蛋白摩尔比时,会发展成有序的纤维包装排列。总之,结构和动态研究表明,α-连环蛋白具有动态的分子构象,使其成为一种机械感受器蛋白。