Spectroscopy Group, Institut Laue-Langevin, 38042 Grenoble Cedex 9, France.
Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, United Kingdom.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2025012118.
As the core component of the adherens junction in cell-cell adhesion, the cadherin-catenin complex transduces mechanical tension between neighboring cells. Structural studies have shown that the cadherin-catenin complex exists as an ensemble of flexible conformations, with the actin-binding domain (ABD) of α-catenin adopting a variety of configurations. Here, we have determined the nanoscale protein domain dynamics of the cadherin-catenin complex using neutron spin echo spectroscopy (NSE), selective deuteration, and theoretical physics analyses. NSE reveals that, in the cadherin-catenin complex, the motion of the entire ABD becomes activated on nanosecond to submicrosecond timescales. By contrast, in the α-catenin homodimer, only the smaller disordered C-terminal tail of ABD is moving. Molecular dynamics (MD) simulations also show increased mobility of ABD in the cadherin-catenin complex, compared to the α-catenin homodimer. Biased MD simulations further reveal that the applied external forces promote the transition of ABD in the cadherin-catenin complex from an ensemble of diverse conformational states to specific states that resemble the actin-bound structure. The activated motion and an ensemble of flexible configurations of the mechanosensory ABD suggest the formation of an entropic trap in the cadherin-catenin complex, serving as negative allosteric regulation that impedes the complex from binding to actin under zero force. Mechanical tension facilitates the reduction in dynamics and narrows the conformational ensemble of ABD to specific configurations that are well suited to bind F-actin. Our results provide a protein dynamics and entropic explanation for the observed force-sensitive binding behavior of a mechanosensitive protein complex.
作为细胞间黏附的黏着连接的核心组成部分,钙黏蛋白-catenin 复合物在相邻细胞之间传递机械张力。结构研究表明,钙黏蛋白-catenin 复合物作为一个柔性构象的集合存在,其中 α-catenin 的肌动蛋白结合域(ABD)采用多种构象。在这里,我们使用中子自旋回波光谱(NSE)、选择性氘化和理论物理分析方法,确定了钙黏蛋白-catenin 复合物的纳米级蛋白质结构域动力学。NSE 表明,在钙黏蛋白-catenin 复合物中,整个 ABD 的运动在纳秒到亚微秒的时间尺度上被激活。相比之下,在 α-catenin 同源二聚体中,只有 ABD 的较小无序 C 端尾部在运动。分子动力学(MD)模拟也显示,与 α-catenin 同源二聚体相比,ABD 在钙黏蛋白-catenin 复合物中的移动性增加。有偏差的 MD 模拟进一步表明,施加的外力促进了钙黏蛋白-catenin 复合物中 ABD 从多种构象状态的集合向类似于肌动蛋白结合结构的特定状态的转变。机械敏感 ABD 的激活运动和灵活构象的集合表明,在钙黏蛋白-catenin 复合物中形成了一个熵陷阱,作为负变构调节,阻止复合物在零力下与肌动蛋白结合。机械张力促进了 ABD 动力学的降低,并将 ABD 的构象集合缩小到特定的构象,这些构象非常适合与 F-肌动蛋白结合。我们的结果为观察到的机械敏感蛋白复合物的力敏感结合行为提供了蛋白质动力学和熵解释。