Suppr超能文献

使用纳米流体梯度混合器研究分子限制和拥挤对辣根过氧化物酶动力学的影响。

Effects of molecular confinement and crowding on horseradish peroxidase kinetics using a nanofluidic gradient mixer.

作者信息

Wichert William R A, Han Donghoon, Bohn Paul W

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.

Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Lab Chip. 2016 Mar 7;16(5):877-83. doi: 10.1039/c5lc01413a.

Abstract

The effects of molecular confinement and crowding on enzyme kinetics were studied at length scales and under conditions similar to those found in biological cells. These experiments were carried out using a nanofluidic network of channels constituting a nanofluidic gradient mixer, providing the basis for measuring multiple experimental conditions simultaneously. The 100 nm × 40 μm nanochannels were wet etched directly into borosilicate glass, then annealed and characterized with fluorescein emission prior to kinetic measurements. The nanofluidic gradient mixer was then used to measure the kinetics of the conversion of the horseradish peroxidase (HRP)-catalyzed conversion of non-fluorescent Amplex Red (AR) to the fluorescent product resorufin in the presence of hydrogen peroxide (H2O2). The design of the gradient mixer allows reaction kinetics to be studied under multiple (five) unique solution compositions in a single experiment. To characterize the efficiency of the device the effects of confinement on HRP-catalyzed AR conversion kinetics were studied by varying the starting ratio of AR : H2O2. Equimolar concentrations of Amplex Red and H2O2 yielded the highest reaction rates followed by 2 : 1, 1 : 2, 5 : 1, and finally 1 : 5 [AR] : [H2O2]. Under all conditions, initial reaction velocities were decreased by excess H2O2. Crowding effects on kinetics were studied by increasing solution viscosity in the nanochannels in the range 1.0-1.6 cP with sucrose. Increasing the solution viscosities in these confined geometries decreases the initial reaction velocity at the highest concentration from 3.79 μM min(-1) at 1.00 cP to 0.192 μM min(-1) at 1.59 cP. Variations in reaction velocity are interpreted in the context of models for HRP catalysis and for molecular crowding.

摘要

在与生物细胞中相似的长度尺度和条件下,研究了分子限制和拥挤对酶动力学的影响。这些实验是通过构成纳米流体梯度混合器的纳米流体通道网络进行的,为同时测量多种实验条件提供了基础。100纳米×40微米的纳米通道直接湿法蚀刻到硼硅酸盐玻璃中,然后进行退火,并在动力学测量之前用荧光素发射进行表征。然后使用纳米流体梯度混合器来测量在过氧化氢(H₂O₂)存在下,辣根过氧化物酶(HRP)催化非荧光的Amplex Red(AR)转化为荧光产物试卤灵的动力学。梯度混合器的设计允许在单个实验中在多种(五种)独特的溶液组成下研究反应动力学。为了表征该装置的效率,通过改变AR:H₂O₂的起始比例来研究限制对HRP催化的AR转化动力学的影响。等摩尔浓度的Amplex Red和H₂O₂产生最高的反应速率,其次是2:1、1:2、5:1,最后是1:5 [AR] : [H₂O₂]。在所有条件下,过量的H₂O₂都会降低初始反应速度。通过用蔗糖将纳米通道中的溶液粘度增加到1.0 - 1.6厘泊范围内,研究了拥挤对动力学的影响。在这些受限几何结构中增加溶液粘度会使最高浓度下的初始反应速度从1.00厘泊时的3.79微摩尔·分钟⁻¹降低到1.59厘泊时的0.192微摩尔·分钟⁻¹。在HRP催化模型和分子拥挤模型的背景下解释反应速度的变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验