Suppr超能文献

测量两种蛋白质在拥挤环境中如何相互影响对方的净电荷。

Measuring how two proteins affect each other's net charge in a crowded environment.

机构信息

Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA.

Mass Spectrometry Core Facility, School of Pharmacy, University of Southern California, Los Angeles, California, USA.

出版信息

Protein Sci. 2021 Aug;30(8):1594-1605. doi: 10.1002/pro.4092. Epub 2021 May 12.

Abstract

Theory predicts that the net charge (Z) of a protein can be altered by the net charge of a neighboring protein as the two approach one another below the Debye length. This type of charge regulation suggests that a protein's charge and perhaps function might be affected by neighboring proteins without direct binding. Charge regulation during protein crowding has never been directly measured due to analytical challenges. Here, we show that lysine specific protein crosslinkers (NHS ester-Staudinger pairs) can be used to mimic crowding by linking two non-interacting proteins at a maximal distance of ~7.9 Å. The net charge of the regioisomeric dimers and preceding monomers can then be determined with lysine-acyl "protein charge ladders" and capillary electrophoresis. As a proof of concept, we covalently linked myoglobin (Z  = -0.43 ± 0.01) and α-lactalbumin (Z  = -4.63 ± 0.05). Amide hydrogen/deuterium exchange and circular dichroism spectroscopy demonstrated that crosslinking did not significantly alter the structure of either protein or result in direct binding (thus mimicking crowding). Ultimately, capillary electrophoretic analysis of the dimeric charge ladder detected a change in charge of ΔZ = -0.04 ± 0.09 upon crowding by this pair (Z  = -5.10 ± 0.07). These small values of ΔZ are not necessarily general to protein crowding (qualitatively or quantitatively) but will vary per protein size, charge, and solvent conditions.

摘要

理论预测,当两个蛋白质在德拜长度以下相互接近时,它们的净电荷(Z)可以通过邻近蛋白质的净电荷改变。这种电荷调节表明,蛋白质的电荷,甚至功能,可能会受到邻近蛋白质的影响,而无需直接结合。由于分析上的挑战,蛋白质拥挤时的电荷调节从未被直接测量过。在这里,我们表明赖氨酸特异性蛋白交联剂(NHS 酯-施蒂德反应对)可用于通过将两个不相互作用的蛋白质在最大距离约 7.9 Å 处连接来模拟拥挤。然后可以使用赖氨酸酰基“蛋白电荷梯”和毛细管电泳来确定区域异构体二聚体和前单体的净电荷。作为概念验证,我们共价连接肌红蛋白(Z = -0.43 ± 0.01)和α-乳白蛋白(Z = -4.63 ± 0.05)。酰胺氢/氘交换和圆二色性光谱表明,交联不会显著改变两种蛋白质的结构,也不会导致直接结合(从而模拟拥挤)。最终,通过该对交联剂对二聚体电荷梯的毛细管电泳分析,在拥挤时检测到电荷变化 ΔZ = -0.04 ± 0.09(Z = -5.10 ± 0.07)。这些小的 ΔZ 值不一定对蛋白质拥挤具有普遍性(定性或定量),但会因蛋白质大小、电荷和溶剂条件而异。

相似文献

6
What Are We Missing by Not Measuring the Net Charge of Proteins?我们没有测量蛋白质的净电荷,会错过什么?
Chemistry. 2019 Jun 7;25(32):7581-7590. doi: 10.1002/chem.201900178. Epub 2019 Apr 10.
10
Direct Measurement of Charge Regulation in Metalloprotein Electron Transfer.直接测量金属蛋白电子转移中的电荷调节。
Angew Chem Int Ed Engl. 2018 May 4;57(19):5364-5368. doi: 10.1002/anie.201712306. Epub 2018 Mar 25.

本文引用的文献

1
Long-Range Charge Reorganization as an Allosteric Control Signal in Proteins.长程电荷重排作为蛋白质的别构调控信号。
J Am Chem Soc. 2020 Dec 2;142(48):20456-20462. doi: 10.1021/jacs.0c10105. Epub 2020 Nov 19.
2
Charge regulation of colloidal particles in aqueous solutions.水溶液中胶体颗粒的电荷调节
Phys Chem Chem Phys. 2020 Nov 14;22(42):24712-24728. doi: 10.1039/d0cp03633a. Epub 2020 Oct 26.
5
Complete Charge Regulation by a Redox Enzyme Upon Single Electron Transfer.通过单电子转移对氧化还原酶进行完全电荷调节。
Angew Chem Int Ed Engl. 2020 Jun 26;59(27):10989-10995. doi: 10.1002/anie.202001452. Epub 2020 Apr 28.
7
Modeling Electrostatic Force in Protein-Protein Recognition.蛋白质-蛋白质识别中静电力的建模
Front Mol Biosci. 2019 Sep 25;6:94. doi: 10.3389/fmolb.2019.00094. eCollection 2019.
9
What Are We Missing by Not Measuring the Net Charge of Proteins?我们没有测量蛋白质的净电荷,会错过什么?
Chemistry. 2019 Jun 7;25(32):7581-7590. doi: 10.1002/chem.201900178. Epub 2019 Apr 10.
10
Programmable design of orthogonal protein heterodimers.可编程设计正交蛋白异源二聚体。
Nature. 2019 Jan;565(7737):106-111. doi: 10.1038/s41586-018-0802-y. Epub 2018 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验