Suppr超能文献

线粒体与运动:优化氧化磷酸化以提高运动表现。

Mitochondria to motion: optimizing oxidative phosphorylation to improve exercise performance.

作者信息

Conley Kevin E

机构信息

Departments of Radiology, Physiology & Biophysics, and Bioengineering, University of Washington Medical Center, Seattle, WA 98195, USA

出版信息

J Exp Biol. 2016 Jan;219(Pt 2):243-9. doi: 10.1242/jeb.126623.

Abstract

Mitochondria oxidize substrates to generate the ATP that fuels muscle contraction and locomotion. This review focuses on three steps in oxidative phosphorylation that have independent roles in setting the overall mitochondrial ATP flux and thereby have direct impact on locomotion. The first is the electron transport chain, which sets the pace for oxidation. New studies indicate that the electron transport chain capacity per mitochondria declines with age and disease, but can be revived by both acute and chronic treatments. The resulting higher ATP production is reflected in improved muscle power output and locomotory performance. The second step is the coupling of ATP supply from O2 uptake (mitochondrial coupling efficiency). Treatments that elevate mitochondrial coupling raise both exercise efficiency and the capacity for sustained exercise in both young and old muscle. The final step is ATP synthesis itself, which is under dynamic control at multiple sites to provide the 50-fold range of ATP flux between resting muscle and exercise at the mitochondrial capacity. Thus, malleability at sites in these subsystems of oxidative phosphorylation has an impact on ATP flux, with direct effects on exercise performance. Interventions are emerging that target these three independent subsystems to provide many paths to improve ATP flux and elevate the muscle performance lost to inactivity, age or disease.

摘要

线粒体氧化底物以生成驱动肌肉收缩和运动的ATP。本综述聚焦于氧化磷酸化过程中的三个步骤,它们在设定线粒体总体ATP通量方面具有独立作用,从而对运动产生直接影响。第一个是电子传递链,它为氧化设定节奏。新研究表明,每个线粒体的电子传递链能力会随着年龄和疾病而下降,但可通过急性和慢性治疗恢复。由此产生的更高ATP产量体现在肌肉力量输出和运动性能的改善上。第二步是从氧气摄取供应ATP的偶联(线粒体偶联效率)。提高线粒体偶联的治疗方法可提高年轻和老年肌肉的运动效率以及持续运动能力。最后一步是ATP合成本身,它在多个位点受到动态控制,以在静息肌肉和线粒体能力下的运动之间提供50倍范围的ATP通量。因此,氧化磷酸化这些子系统中位点的可塑性对ATP通量有影响,对运动表现有直接影响。针对这三个独立子系统的干预措施正在出现,为改善ATP通量和提升因不活动、年龄或疾病而丧失的肌肉性能提供了多种途径。

相似文献

1
Mitochondria to motion: optimizing oxidative phosphorylation to improve exercise performance.
J Exp Biol. 2016 Jan;219(Pt 2):243-9. doi: 10.1242/jeb.126623.
2
Elevated energy coupling and aerobic capacity improves exercise performance in endurance-trained elderly subjects.
Exp Physiol. 2013 Apr;98(4):899-907. doi: 10.1113/expphysiol.2012.069633. Epub 2012 Nov 30.
3
Mitochondrial Coupling and Contractile Efficiency in Humans with High and Low V˙O2peaks.
Med Sci Sports Exerc. 2016 May;48(5):811-21. doi: 10.1249/MSS.0000000000000858.
5
Exercise efficiency is reduced by mitochondrial uncoupling in the elderly.
Exp Physiol. 2013 Mar;98(3):768-77. doi: 10.1113/expphysiol.2012.067314. Epub 2012 Oct 19.
6
Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16701-6. doi: 10.1073/pnas.0808889105. Epub 2008 Oct 20.
7
Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults.
J Cachexia Sarcopenia Muscle. 2018 Apr;9(2):279-294. doi: 10.1002/jcsm.12272. Epub 2018 Jan 24.
9
Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle.
J Physiol. 2005 Dec 1;569(Pt 2):467-73. doi: 10.1113/jphysiol.2005.097782. Epub 2005 Oct 27.
10
Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo.
J Physiol. 2003 Dec 1;553(Pt 2):589-99. doi: 10.1113/jphysiol.2003.045872. Epub 2003 Sep 26.

引用本文的文献

5
Comparative study on muscle function in two different streptozotocin-induced diabetic models.
Acta Diabetol. 2024 Nov;61(11):1443-1453. doi: 10.1007/s00592-024-02311-3. Epub 2024 Jun 10.
7
Non-lethal sampling for assessment of mitochondrial function does not affect metabolic rate and swimming performance.
Philos Trans R Soc Lond B Biol Sci. 2024 Feb 26;379(1896):20220483. doi: 10.1098/rstb.2022.0483. Epub 2024 Jan 8.
9
How does mitochondria function contribute to aerobic performance enhancement in lizards?
Front Physiol. 2023 May 5;14:1165313. doi: 10.3389/fphys.2023.1165313. eCollection 2023.
10
Factors associated with high-level endurance performance: An expert consensus derived via the Delphi technique.
PLoS One. 2022 Dec 27;17(12):e0279492. doi: 10.1371/journal.pone.0279492. eCollection 2022.

本文引用的文献

1
Effects of aging on mechanical efficiency and muscle activation during level and uphill walking.
J Electromyogr Kinesiol. 2015 Feb;25(1):193-8. doi: 10.1016/j.jelekin.2014.09.003. Epub 2014 Sep 16.
2
Skeletal Muscle Mitochondrial Function and Fatigability in Older Adults.
J Gerontol A Biol Sci Med Sci. 2015 Nov;70(11):1379-85. doi: 10.1093/gerona/glu134. Epub 2014 Aug 28.
3
Lower mitochondrial proton leak and decreased glutathione redox in primary muscle cells of obese diet-resistant versus diet-sensitive humans.
J Clin Endocrinol Metab. 2014 Nov;99(11):4223-30. doi: 10.1210/jc.2014-1726. Epub 2014 Aug 22.
4
Influence of dietary nitrate on the physiological determinants of exercise performance: a critical review.
Appl Physiol Nutr Metab. 2014 Sep;39(9):1019-28. doi: 10.1139/apnm-2014-0036. Epub 2014 Apr 30.
5
Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle.
J Physiol. 2014 Mar 15;592(6):1341-52. doi: 10.1113/jphysiol.2013.267336. Epub 2014 Jan 6.
7
Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.
Trends Biochem Sci. 2013 Dec;38(12):592-602. doi: 10.1016/j.tibs.2013.09.001. Epub 2013 Oct 10.
10
Redox regulation of mitochondrial ATP synthase.
Trends Cardiovasc Med. 2013 Jan;23(1):14-8. doi: 10.1016/j.tcm.2012.08.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验