Suppr超能文献

一种自动生成组合轨道计数方程的算法。

An Algorithm to Automatically Generate the Combinatorial Orbit Counting Equations.

作者信息

Melckenbeeck Ine, Audenaert Pieter, Michoel Tom, Colle Didier, Pickavet Mario

机构信息

Department of Information Technology (INTEC), Ghent University-iMinds, Ghent, Belgium.

The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom.

出版信息

PLoS One. 2016 Jan 21;11(1):e0147078. doi: 10.1371/journal.pone.0147078. eCollection 2016.

Abstract

Graphlets are small subgraphs, usually containing up to five vertices, that can be found in a larger graph. Identification of the graphlets that a vertex in an explored graph touches can provide useful information about the local structure of the graph around that vertex. Actually finding all graphlets in a large graph can be time-consuming, however. As the graphlets grow in size, more different graphlets emerge and the time needed to find each graphlet also scales up. If it is not needed to find each instance of each graphlet, but knowing the number of graphlets touching each node of the graph suffices, the problem is less hard. Previous research shows a way to simplify counting the graphlets: instead of looking for the graphlets needed, smaller graphlets are searched, as well as the number of common neighbors of vertices. Solving a system of equations then gives the number of times a vertex is part of each graphlet of the desired size. However, until now, equations only exist to count graphlets with 4 or 5 nodes. In this paper, two new techniques are presented. The first allows to generate the equations needed in an automatic way. This eliminates the tedious work needed to do so manually each time an extra node is added to the graphlets. The technique is independent on the number of nodes in the graphlets and can thus be used to count larger graphlets than previously possible. The second technique gives all graphlets a unique ordering which is easily extended to name graphlets of any size. Both techniques were used to generate equations to count graphlets with 4, 5 and 6 vertices, which extends all previous results. Code can be found at https://github.com/IneMelckenbeeck/equation-generator and https://github.com/IneMelckenbeeck/graphlet-naming.

摘要

图小子是小型子图,通常包含至多五个顶点,可在更大的图中找到。识别被探索图中一个顶点所接触的图小子能提供有关该顶点周围图的局部结构的有用信息。然而,在大图中实际找到所有图小子可能很耗时。随着图小子规模的增大,会出现更多不同的图小子,找到每个图小子所需的时间也会增加。如果不需要找到每个图小子的每个实例,而只知道接触图中每个节点的图小子数量就足够了,那么问题就没那么难。先前的研究展示了一种简化图小子计数的方法:不是寻找所需的图小子,而是搜索更小的图小子以及顶点的公共邻居数量。然后求解一个方程组就能得出一个顶点作为所需大小的每个图小子一部分的次数。然而,到目前为止,仅存在用于计数具有4个或5个节点的图小子的方程。本文提出了两种新技术。第一种技术允许以自动方式生成所需的方程。这消除了每次给图小子添加一个额外节点时手动进行此项繁琐工作的需要。该技术与图小子中的节点数量无关,因此可用于计数比以前更大的图小子。第二种技术为所有图小子赋予唯一的排序,该排序可轻松扩展以命名任何大小的图小子。这两种技术都被用于生成计数具有4、5和6个顶点的图小子的方程,扩展了所有先前的结果。代码可在https://github.com/IneMelckenbeeck/equation - generator和https://github.com/IneMelckenbeeck/graphlet - naming找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d93f/4721873/11696c4118c0/pone.0147078.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验