Suppr超能文献

基于索引的子图匹配算法(ISMA):使用优化搜索树在大型网络中快速枚举子图。

The index-based subgraph matching algorithm (ISMA): fast subgraph enumeration in large networks using optimized search trees.

机构信息

Department of Information Technology, Ghent University, Ghent, Belgium.

出版信息

PLoS One. 2013 Apr 19;8(4):e61183. doi: 10.1371/journal.pone.0061183. Print 2013.

Abstract

Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/.

摘要

子图匹配算法旨在查找大型图或网络中所有预定义子图的实例,并在发现和分析所谓的网络基元(出现频率高于随机预期的子图模式)方面发挥重要作用。我们提出了基于索引的子图匹配算法(ISMA),这是一种新颖的基于树的算法。ISMA 通过仔细选择查询子图节点的调查顺序,与现有算法相比实现了加速。为了实现这一点,我们开发了许多数据结构,并最大限度地利用了子图的对称特性。我们将 ISMA 与一种简单的递归基于树的算法和一些著名的子图匹配算法进行了比较。我们的算法优于其他算法,尤其是在大型网络和大型查询子图上。ISMA 的 Java 实现可在 http://sourceforge.net/projects/isma/ 上免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3e/3631255/63b712e62136/pone.0061183.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验