Suppr超能文献

生物膜对抗菌药物的敏感性随抗菌药物暴露时间的增加而增强。

Biofilm Antimicrobial Susceptibility Increases With Antimicrobial Exposure Time.

作者信息

Castaneda Paulo, McLaren Alex, Tavaziva Gamuchirai, Overstreet Derek

机构信息

Banner - University Medical Center Phoenix, 1320 N 10th Street, Phoenix, AZ, 85006, USA.

Center for Interventional Biomaterials, Arizona State University, Tempe, AZ, USA.

出版信息

Clin Orthop Relat Res. 2016 Jul;474(7):1659-64. doi: 10.1007/s11999-016-4700-z.

Abstract

BACKGROUND

The antimicrobial concentration required to kill all the bacteria in a biofilm, known as the minimum biofilm eradication concentration (MBEC), is typically determined in vitro by exposing the biofilm to serial concentrations of antimicrobials for 24 hours or less. Local delivery is expected to cause high local levels for longer than 24 hours. It is unknown if longer antimicrobial exposures require the same concentration to eradicate bacteria in biofilm. Questions/purposes Does MBEC change with increased antimicrobial exposure time?

METHODS

Biofilms were grown for 24 hours using five pathogens (methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa) and then exposed to four antimicrobials regimens: tobramycin, vancomycin, and tobramycin combined with vancomycin in 3:1 and 1:1 ratios by weight in concentrations of 62.5, 125, 250, 500, 1000, 2000, 4000, and 8000 μg/mL for three durations, 1, 3, and 5 days, in triplicate. MBEC was measured as the lowest concentration that killed all bacteria in the biofilm determined by 21-day subculture.

RESULTS

MBEC was lower when antimicrobial exposure time was longer. For the staphylococcus species, the MBEC was lower when exposure time was 5 days than 1 day in 11 of 12 antimicrobial/microorganism pairs. The MBEC range for these 11 pairs on Day 1 was 4000 to > 8000 μg/mL and on Day 5 was < 250 to 8000 μg/mL. MBEC for tobramycin/P. aeruginosa was 2000 μg/mL on Day 1 and ≤ 250 μg/mL on Day 5, and for E. coli, 125 μg/mL on Day 1 and ≤ 62.5 on Day 5.

CONCLUSIONS

Although antimicrobial susceptibility was lower for longer exposure times in the microorganisms we studied, confirmation is required for other pathogens. Clinical Relevance One-day MBEC assays may overestimate the local antimicrobial levels needed to kill organisms in biofilm if local levels are sustained at MBEC or above for longer than 24 hours. Future studies are needed to confirm that antimicrobial levels achieved clinically from local delivery are above the MBEC at relevant time points and to confirm that MBEC for in vitro microorganisms accurately represents MBEC of in vivo organisms in an clinical infection.

摘要

背景

杀死生物膜中所有细菌所需的抗菌剂浓度,即最低生物膜根除浓度(MBEC),通常通过在体外将生物膜暴露于一系列浓度的抗菌剂中24小时或更短时间来确定。局部给药预计会使局部浓度在超过24小时的时间内保持在较高水平。尚不清楚延长抗菌剂暴露时间是否需要相同的浓度来根除生物膜中的细菌。问题/目的MBEC是否会随着抗菌剂暴露时间的延长而改变?

方法

使用五种病原体(甲氧西林敏感金黄色葡萄球菌、甲氧西林耐药金黄色葡萄球菌、表皮葡萄球菌、大肠杆菌和铜绿假单胞菌)培养生物膜24小时,然后将其暴露于四种抗菌方案:妥布霉素(tobramycin)、万古霉素(vancomycin)以及按重量比3:1和1:1混合的妥布霉素与万古霉素,浓度分别为62.5、125、250、500、1000、2000,4000和8000μg/mL,持续1、3和5天,每种情况重复三次。MBEC的测量方法是通过21天传代培养确定杀死生物膜中所有细菌的最低浓度。

结果

抗菌剂暴露时间越长,MBEC越低。对于葡萄球菌属,在12对抗菌剂/微生物组合中,有11对在暴露5天时的MBEC低于暴露1天时。这11对在第1天的MBEC范围为4000至>8000μg/mL,在第5天为<250至8000μg/mL。妥布霉素/铜绿假单胞菌在第1天的MBEC为2000μg/mL,在第5天≤250μg/mL;对于大肠杆菌,在第1天为125μg/mL,在第5天≤62.5μg/mL。

结论

虽然在我们研究的微生物中,暴露时间越长抗菌敏感性越低,但其他病原体还需要进一步证实。临床意义如果局部浓度在MBEC或更高水平维持超过24小时,那么一天的MBEC检测可能会高估杀死生物膜中细菌所需的局部抗菌剂水平。未来需要进行研究,以确认临床局部给药达到的抗菌剂浓度在相关时间点高于MBEC,并确认体外微生物的MBEC准确代表临床感染中体内微生物的MBEC。

相似文献

1
Biofilm Antimicrobial Susceptibility Increases With Antimicrobial Exposure Time.
Clin Orthop Relat Res. 2016 Jul;474(7):1659-64. doi: 10.1007/s11999-016-4700-z.
4
Halicin Is Effective Against Staphylococcus aureus Biofilms In Vitro.
Clin Orthop Relat Res. 2022 Aug 1;480(8):1476-1487. doi: 10.1097/CORR.0000000000002251. Epub 2022 May 17.
5
Estimation of Minimum Biofilm Eradication Concentration (MBEC) on Biofilm on Orthopedic Implants in a Rodent Femoral Infection Model.
Front Cell Infect Microbiol. 2022 Jul 1;12:896978. doi: 10.3389/fcimb.2022.896978. eCollection 2022.
6
Biofilm eradication kinetics of the ultrashort lipopeptide C12 -OOWW-NH2 utilizing a modified MBEC Assay(™).
Chem Biol Drug Des. 2015 May;85(5):645-52. doi: 10.1111/cbdd.12441. Epub 2014 Oct 23.
7
Application of a feasible method for determination of biofilm antimicrobial susceptibility in staphylococci.
APMIS. 2010 Nov;118(11):873-7. doi: 10.1111/j.1600-0463.2010.02681.x. Epub 2010 Sep 14.
8
Determination of Tobramycin and Vancomycin Exposure Required to Eradicate Biofilms on Muscle and Bone Tissue .
J Bone Jt Infect. 2019 Jan 1;4(1):1-9. doi: 10.7150/jbji.29711. eCollection 2019.
9
Violacein antimicrobial activity on biofilm.
Nat Prod Res. 2020 Dec;34(23):3414-3417. doi: 10.1080/14786419.2019.1569654. Epub 2019 Feb 13.
10
Statins and Antimicrobial Effects: Simvastatin as a Potential Drug against Staphylococcus aureus Biofilm.
PLoS One. 2015 May 28;10(5):e0128098. doi: 10.1371/journal.pone.0128098. eCollection 2015.

引用本文的文献

1
Biocides as drivers of antibiotic resistance: A critical review of environmental implications and public health risks.
Environ Sci Ecotechnol. 2025 Mar 24;25:100557. doi: 10.1016/j.ese.2025.100557. eCollection 2025 May.
2
Alkyl Pyridinol Compounds Exhibit Antimicrobial Effects against Gram-Positive Bacteria.
Antibiotics (Basel). 2024 Sep 20;13(9):897. doi: 10.3390/antibiotics13090897.
4
Clinical use and applications of a citrate-based antiseptic lavage for the prevention and treatment of PJI.
Front Med (Lausanne). 2024 Jul 2;11:1397192. doi: 10.3389/fmed.2024.1397192. eCollection 2024.
7
A microtiter peg lid with ziggurat geometry for medium-throughput antibiotic testing and imaging of biofilms.
Biofilm. 2023 Nov 17;6:100167. doi: 10.1016/j.bioflm.2023.100167. eCollection 2023 Dec 15.
8
Novel Local Antifungal Treatment for Fungal Periprosthetic Joint Infection With Continuous Local Antibiotic Perfusion: A Surgical Technique.
Arthroplast Today. 2023 Nov 7;24:101245. doi: 10.1016/j.artd.2023.101245. eCollection 2023 Dec.
9
Collagen fleece in orthopaedic infections.
OTA Int. 2021 Jun 15;4(3 Suppl). doi: 10.1097/OI9.0000000000000111. eCollection 2021 Jun.
10
Class-Driven Synergy and Antagonism between a Pseudomonas Phage and Antibiotics.
Infect Immun. 2023 Aug 16;91(8):e0006523. doi: 10.1128/iai.00065-23. Epub 2023 Jul 5.

本文引用的文献

1
Antimicrobial distribution from local delivery depends on dose : a pilot study with MRI.
Clin Orthop Relat Res. 2014 Nov;472(11):3324-9. doi: 10.1007/s11999-014-3493-1.
3
Small colony variants (SCVs) of Staphylococcus aureus--a bacterial survival strategy.
Infect Genet Evol. 2014 Jan;21:515-22. doi: 10.1016/j.meegid.2013.05.016. Epub 2013 May 27.
4
Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery.
Curr Protoc Pharmacol. 2010 Sep;Chapter 13:Unit 13A.8. doi: 10.1002/0471141755.ph13a08s50.
7
The estimation of the bactericidal power of the blood.
J Hyg (Lond). 1938 Nov;38(6):732-49. doi: 10.1017/s002217240001158x.
10
Persister cells, dormancy and infectious disease.
Nat Rev Microbiol. 2007 Jan;5(1):48-56. doi: 10.1038/nrmicro1557. Epub 2006 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验