Kuznetsov Andrey S, Polyansky Anton A, Fleck Markus, Volynsky Pavel E, Efremov Roman G
M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya Str., 16/10, Moscow 117997, Russia.
Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna , Campus Vienna Biocenter 5, Vienna AT-1030, Austria.
J Chem Theory Comput. 2015 Sep 8;11(9):4415-26. doi: 10.1021/acs.jctc.5b00206. Epub 2015 Aug 18.
The cell membrane is "stuffed" with proteins, whose transmembrane (TM) helical domains spontaneously associate to form functionally active complexes. For a number of membrane receptors, a modulation of TM domains' oligomerization has been shown to contribute to the development of severe pathological states, thus calling for detailed studies of the atomistic aspects of the process. Despite considerable progress achieved so far, several crucial questions still remain: How do the helices recognize each other in the membrane? What is the driving force of their association? Here, we assess the dimerization free energy of TM helices along with a careful consideration of the interplay between the structure and dynamics of protein and lipids using atomistic molecular dynamics simulations in the hydrated lipid bilayer for three different model systems - TM fragments of glycophorin A, polyalanine and polyleucine peptides. We observe that the membrane driven association of TM helices exhibits a prominent entropic character, which depends on the peptide sequence. Thus, a single TM peptide of a given composition induces strong and characteristic perturbations in the hydrophobic core of the bilayer, which may facilitate the initial "communication" between TM helices even at the distances of 20-30 Å. Upon tight helix-helix association, the immobilized lipids accommodate near the peripheral surfaces of the dimer, thus disturbing the packing of the surrounding. The dimerization free energy of the modeled peptides corresponds to the strength of their interactions with lipids inside the membrane being the lowest for glycophorin A and similarly higher for both homopolymers. We propose that the ability to accommodate lipid tails determines the dimerization strength of TM peptides and that the lipid matrix directly governs their association.
细胞膜中“塞满了”蛋白质,其跨膜(TM)螺旋结构域会自发结合形成功能活跃的复合物。对于许多膜受体而言,TM结构域寡聚化的调节已被证明会导致严重病理状态的发展,因此需要对该过程的原子层面进行详细研究。尽管到目前为止已经取得了相当大的进展,但仍有几个关键问题存在:螺旋在膜中如何相互识别?它们结合的驱动力是什么?在这里,我们使用原子分子动力学模拟,在水合脂质双层中对三种不同的模型系统——血型糖蛋白A的TM片段、聚丙氨酸和聚亮氨酸肽,评估TM螺旋的二聚自由能,并仔细考虑蛋白质和脂质的结构与动力学之间的相互作用。我们观察到,膜驱动的TM螺旋结合表现出显著的熵特征,这取决于肽序列。因此,给定组成的单个TM肽会在双层的疏水核心中引起强烈且具有特征性的扰动,这甚至在20 - 30 Å的距离时也可能促进TM螺旋之间的初始“通讯”。在紧密的螺旋 - 螺旋结合后,固定化的脂质会在二聚体的外周表面附近聚集,从而扰乱周围的堆积。所模拟肽的二聚自由能对应于它们与膜内脂质相互作用的强度,血型糖蛋白A的最低,两种同聚物的则类似地更高。我们提出,容纳脂质尾部的能力决定了TM肽的二聚强度,并且脂质基质直接控制它们的结合。