Cunha João Paulo Silva, Choupina Hugo Miguel Pereira, Rocha Ana Patrícia, Fernandes José Maria, Achilles Felix, Loesch Anna Mira, Vollmar Christian, Hartl Elisabeth, Noachtar Soheyl
Institute for Systems Engineering and Computers - Technology and Science (INESC TEC), and Faculty of Engineering (FEUP), University of Porto, Porto, Portugal.
Epilepsy Center, Department of Neurology, University of Munich, Munich, Germany.
PLoS One. 2016 Jan 22;11(1):e0145669. doi: 10.1371/journal.pone.0145669. eCollection 2016.
Epilepsy is a common neurological disorder which affects 0.5-1% of the world population. Its diagnosis relies both on Electroencephalogram (EEG) findings and characteristic seizure-induced body movements--called seizure semiology. Thus, synchronous EEG and (2D)video recording systems (known as Video-EEG) are the most accurate tools for epilepsy diagnosis. Despite the establishment of several quantitative methods for EEG analysis, seizure semiology is still analyzed by visual inspection, based on epileptologists' subjective interpretation of the movements of interest (MOIs) that occur during recorded seizures. In this contribution, we present NeuroKinect, a low-cost, easy to setup and operate solution for a novel 3Dvideo-EEG system. It is based on a RGB-D sensor (Microsoft Kinect camera) and performs 24/7 monitoring of an Epilepsy Monitoring Unit (EMU) bed. It does not require the attachment of any reflectors or sensors to the patient's body and has a very low maintenance load. To evaluate its performance and usability, we mounted a state-of-the-art 6-camera motion-capture system and our low-cost solution over the same EMU bed. A comparative study of seizure-simulated MOIs showed an average correlation of the resulting 3D motion trajectories of 84.2%. Then, we used our system on the routine of an EMU and collected 9 different seizures where we could perform 3D kinematic analysis of 42 MOIs arising from the temporal (TLE) (n = 19) and extratemporal (ETE) brain regions (n = 23). The obtained results showed that movement displacement and movement extent discriminated both seizure MOI groups with statistically significant levels (mean = 0.15 m vs. 0.44 m, p<0.001; mean = 0.068 m(3) vs. 0.14 m(3), p<0.05, respectively). Furthermore, TLE MOIs were significantly shorter than ETE (mean = 23 seconds vs 35 seconds, p<0.01) and presented higher jerking levels (mean = 345 ms(-3) vs 172 ms(-3), p<0.05). Our newly implemented 3D approach is faster by 87.5% in extracting body motion trajectories when compared to a 2D frame by frame tracking procedure. We conclude that this new approach provides a more comfortable (both for patients and clinical professionals), simpler, faster and lower-cost procedure than previous approaches, therefore providing a reliable tool to quantitatively analyze MOI patterns of epileptic seizures in the routine of EMUs around the world. We hope this study encourages other EMUs to adopt similar approaches so that more quantitative information is used to improve epilepsy diagnosis.
癫痫是一种常见的神经系统疾病,影响着全球0.5%-1%的人口。其诊断既依赖于脑电图(EEG)检查结果,也依赖于癫痫发作引起的特征性身体运动——即发作症状学。因此,同步脑电图和(二维)视频记录系统(即视频脑电图)是癫痫诊断最准确的工具。尽管已经建立了几种脑电图分析的定量方法,但发作症状学仍通过目视检查进行分析,这基于癫痫专家对记录的发作期间发生的感兴趣运动(MOI)的主观解读。在本论文中,我们介绍了NeuroKinect,这是一种用于新型三维视频脑电图系统的低成本、易于设置和操作的解决方案。它基于一个RGB-D传感器(微软Kinect摄像头),对癫痫监测单元(EMU)的病床进行全天候监测。它不需要在患者身体上附着任何反射器或传感器,维护负担非常低。为了评估其性能和可用性,我们在同一EMU病床上安装了一个最先进的六摄像头动作捕捉系统和我们的低成本解决方案。对模拟发作的MOI进行的对比研究表明,所得三维运动轨迹的平均相关性为84.2%。然后,我们在EMU的日常工作中使用我们的系统,收集了9次不同的发作,在这些发作中,我们能够对来自颞叶(TLE)(n = 19)和颞叶外(ETE)脑区(n = 23)的42个MOI进行三维运动学分析。所得结果表明,运动位移和运动范围在统计学显著水平上区分了两个发作MOI组(平均值分别为0.15米对0.44米,p<0.001;平均值分别为0.068立方米对0.14立方米,p<0.05)。此外,TLE的MOI明显比ETE的短(平均值分别为23秒对35秒,p<0.01),并且具有更高的抽搐水平(平均值分别为345毫秒⁻³对172毫秒⁻³,p<0.05)。与逐帧二维跟踪程序相比,我们新实施的三维方法在提取身体运动轨迹时快87.5%。我们得出结论,这种新方法比以前的方法提供了一种更舒适(对患者和临床专业人员而言)、更简单、更快且成本更低的程序,因此为在世界各地EMU的日常工作中定量分析癫痫发作的MOI模式提供了一个可靠的工具。我们希望这项研究能鼓励其他EMU采用类似方法,以便利用更多定量信息来改善癫痫诊断。