Suppr超能文献

一种使用配对参考样本和目标样本的健康与疾病个体化预测指标。

An individualized predictor of health and disease using paired reference and target samples.

作者信息

Liu Tzu-Yu, Burke Thomas, Park Lawrence P, Woods Christopher W, Zaas Aimee K, Ginsburg Geoffrey S, Hero Alfred O

机构信息

Electrical Engineering and Computer Science Department, University of California, Berkeley CA, USA.

Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham NC, USA.

出版信息

BMC Bioinformatics. 2016 Jan 22;17:47. doi: 10.1186/s12859-016-0889-9.

Abstract

BACKGROUND

Consider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current test sample, called a target sample, with the patient's previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person's healthy reference to enhance predictive accuracy. This paper develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels.

RESULTS

The objective is to predict each subject's state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large scale serially sampled respiratory virus challenge study we quantify the diagnostic advantage of pairing a person's baseline reference with his or her target sample. The full study consists of 2886 microarray chips assaying 12,023 genes of 151 human volunteer subjects under 4 different inoculation regimes (HRV, RSV, H1N1, H3N2). We train (with cross-validation) reference-aided sparse multi-class classifier algorithms on this data to show that inclusion of a subject's reference sample can improve prediction accuracy by as much as 14 %, for the H3N2 cohort, and by at least 6 %, for the H1N1 cohort. Remarkably, these gains in accuracy are achieved by using smaller panels of genes, e.g., 39 % fewer for H3N2 and 31 % fewer for H1N1. The biomarkers selected by the predictors fall into two categories: 1) contrasting genes that tend to differentially express between target and reference samples over the population; 2) reinforcement genes that remain constant over the two samples, which function as housekeeping normalization genes. Many of these genes are common to all 4 viruses and their roles in the predictor elucidate the function that they play in differentiating the different states of host immune response.

CONCLUSIONS

If one uses a suitable mathematical prediction algorithm, inclusion of a healthy reference in biomarker diagnostic testing can potentially improve accuracy of disease prediction with fewer biomarkers.

摘要

背景

考虑这样一个问题,即当能够将患者当前的检测样本(称为目标样本)与患者先前获取的健康样本(称为参考样本)配对时,设计一组复杂的生物标志物来预测患者的健康或疾病状态。与总体平均参考样本不同,该参考样本是个体化的。将配对样本相互比较和对照的自动化预测算法可能会产生新一代的检测面板,这些面板通过与个体的健康参考样本进行比较来提高预测准确性。本文开发了这样一种个体化预测器,并说明了在设计预测性基因表达面板时纳入健康参考样本的附加价值。

结果

目标是预测每个受试者的感染状态,例如,既未暴露也未感染、暴露但未感染、感染的急性前期、感染的急性期、感染的急性后期。利用在一项大规模的连续采样呼吸道病毒攻击研究中收集的基因微阵列数据,我们量化了将个体的基线参考样本与其目标样本配对的诊断优势。整个研究包括2886个微阵列芯片,检测了151名人类志愿者受试者在4种不同接种方案(HRV、RSV、H1N1、H3N2)下的12023个基因。我们在这些数据上训练(通过交叉验证)参考辅助的稀疏多类分类器算法,以表明纳入受试者的参考样本可以将预测准确性提高多达14%(对于H3N2队列),以及至少6%(对于H1N1队列)。值得注意的是,通过使用更小的基因面板实现了这些准确性的提高,例如,H3N2队列减少了39%,H1N1队列减少了31%。预测器选择的生物标志物分为两类:1)在总体中目标样本和参考样本之间倾向于差异表达的对比基因;2)在两个样本中保持恒定的强化基因,其起到看家标准化基因的作用。这些基因中的许多是所有4种病毒共有的,它们在预测器中的作用阐明了它们在区分宿主免疫反应不同状态中所起的功能。

结论

如果使用合适的数学预测算法,在生物标志物诊断测试中纳入健康参考样本可能会以更少的生物标志物提高疾病预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bcf/4722633/902f3b6b5a0f/12859_2016_889_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验