Savalei Victoria, Yuan Ke-Hai
a University of British Columbia.
b University of Notre Dame.
Multivariate Behav Res. 2009 Nov 30;44(6):741-63. doi: 10.1080/00273170903333590.
Evaluating the fit of a structural equation model via bootstrap requires a transformation of the data so that the null hypothesis holds exactly in the sample. For complete data, such a transformation was proposed by Beran and Srivastava (1985) for general covariance structure models and applied to structural equation modeling by Bollen and Stine (1992) . An extension of this transformation to missing data was presented by Enders (2002) , but it is an approximate and not an exact solution, with the degree of approximation unknown. In this article, we provide several approaches to obtaining an exact solution. First, an explicit solution for the special case when the sample covariance matrix within each missing data pattern is invertible is given. Second, 2 iterative algorithms are described for obtaining an exact solution in the general case. We evaluate the rejection rates of the bootstrapped likelihood ratio statistic obtained via the new procedures in a Monte Carlo study. Our main finding is that model-based bootstrap with incomplete data performs quite well across a variety of distributional conditions, missing data mechanisms, and proportions of missing data. We illustrate our new procedures using empirical data on 26 cognitive ability measures in junior high students, published in Holzinger and Swineford (1939) .
通过自举法评估结构方程模型的拟合度需要对数据进行变换,以使原假设在样本中完全成立。对于完整数据,Beran和Srivastava(1985)针对一般协方差结构模型提出了这样一种变换,并由Bollen和Stine(1992)应用于结构方程建模。Enders(2002)提出了将这种变换扩展到缺失数据的方法,但它是一种近似解而非精确解,近似程度未知。在本文中,我们提供了几种获得精确解的方法。首先,给出了每个缺失数据模式内样本协方差矩阵可逆的特殊情况下的显式解。其次,描述了两种迭代算法,用于在一般情况下获得精确解。我们在蒙特卡罗研究中评估了通过新程序获得的自举似然比统计量的拒绝率。我们的主要发现是,基于模型的不完整数据自举法在各种分布条件、缺失数据机制和缺失数据比例下表现良好。我们使用Holzinger和Swineford(1939)发表的关于初中生26项认知能力测量的实证数据来说明我们的新程序。