Department of Psychology, Faculty of Social Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China.
Behav Res Methods. 2024 Mar;56(3):1678-1696. doi: 10.3758/s13428-023-02114-4. Epub 2023 Aug 7.
Missing data is a common occurrence in mediation analysis. As a result, the methods used to construct confidence intervals around the indirect effect should consider missing data. Previous research has demonstrated that, for the indirect effect in data with complete cases, the Monte Carlo method performs as well as nonparametric bootstrap confidence intervals (see MacKinnon et al., Multivariate Behavioral Research, 39(1), 99-128, 2004; Preacher & Selig, Communication Methods and Measures, 6(2), 77-98, 2012; Tofighi & MacKinnon, Structural Equation Modeling: A Multidisciplinary Journal, 23(2), 194-205, 2015). In this manuscript, we propose a simple, fast, and accurate two-step approach for generating confidence intervals for the indirect effect, in the presence of missing data, based on the Monte Carlo method. In the first step, an appropriate method, for example, full-information maximum likelihood or multiple imputation, is used to estimate the parameters and their corresponding sampling variance-covariance matrix in a mediation model. In the second step, the sampling distribution of the indirect effect is simulated using estimates from the first step. A confidence interval is constructed from the resulting sampling distribution. A simulation study with various conditions is presented. Implications of the results for applied research are discussed.
缺失数据在中介分析中很常见。因此,用于构建间接效应置信区间的方法应该考虑缺失数据。先前的研究表明,对于完全案例数据中的间接效应,蒙特卡罗方法的表现与非参数引导置信区间一样好(见 MacKinnon 等人,多变量行为研究,39(1),99-128,2004 年;Preacher 和 Selig,沟通方法和措施,6(2),77-98,2012 年;Tofighi 和 MacKinnon,结构方程建模:多学科杂志,23(2),194-205,2015 年)。在本文中,我们提出了一种简单、快速和准确的两步方法,用于在存在缺失数据的情况下基于蒙特卡罗方法生成间接效应的置信区间。在第一步中,使用适当的方法,例如完全信息最大似然或多重插补,来估计中介模型中的参数及其相应的抽样方差-协方差矩阵。在第二步中,使用第一步的估计值模拟间接效应的抽样分布。从所得的抽样分布中构建置信区间。提出了具有各种条件的模拟研究。讨论了结果对应用研究的影响。