Suppr超能文献

癌症中DMP1-ARF-MDM2-p53通路的异常剪接

Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer.

作者信息

Inoue Kazushi, Fry Elizabeth A

机构信息

Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC.

出版信息

Int J Cancer. 2016 Jul 1;139(1):33-41. doi: 10.1002/ijc.30003. Epub 2016 Feb 8.

Abstract

Alternative splicing (AS) of mRNA precursors is a ubiquitous mechanism for generating numerous transcripts with different activities from one genomic locus in mammalian cells. The gene products from a single locus can thus have similar, dominant-negative or even opposing functions. Aberrant AS has been found in cancer to express proteins that promote cell growth, local invasion and metastasis. This review will focus on the aberrant splicing of tumor suppressor/oncogenes that belong to the DMP1-ARF-MDM2-p53 pathway. Our recent study shows that the DMP1 locus generates both tumor-suppressive DMP1α (p53-dependent) and oncogenic DMP1β (p53-independent) splice variants, and the DMP1β/α ratio increases with neoplastic transformation of breast epithelial cells. This process is associated with high DMP1β protein expression and shorter survival of breast cancer (BC) patients. Accumulating pieces of evidence show that ARF is frequently inactivated by aberrant splicing in human cancers, demonstrating its involvement in human malignancies. Splice variants from the MDM2 locus promote cell growth in culture and accelerate tumorigenesis in vivo. Human cancers expressing these splice variants are associated with advanced stage/metastasis, and thus have negative clinical impacts. Although they lack most of the p53-binding domain, their activities are mostly dependent on p53 since they bind to wild-type MDM2. The p53 locus produces splice isoforms that have either favorable (β/γ at the C-terminus) or negative impact (Δ40, Δ133 at the N-terminus) on patients' survival. As the oncogenic AS products from these loci are expressed only in cancer cells, they may eventually become targets for molecular therapies.

摘要

mRNA前体的可变剪接是一种普遍存在的机制,可从哺乳动物细胞中的一个基因组位点产生具有不同活性的众多转录本。因此,来自单个位点的基因产物可以具有相似、显性负性甚至相反的功能。在癌症中已发现异常可变剪接可表达促进细胞生长、局部侵袭和转移的蛋白质。本综述将聚焦于属于DMP1-ARF-MDM2-p53通路的肿瘤抑制基因/癌基因的异常剪接。我们最近的研究表明,DMP1位点产生肿瘤抑制性的DMP1α(p53依赖性)和致癌性的DMP1β(p53非依赖性)剪接变体,并且随着乳腺上皮细胞的肿瘤转化,DMP1β/α比值增加。这一过程与DMP1β蛋白高表达以及乳腺癌(BC)患者较短的生存期相关。越来越多的证据表明,ARF在人类癌症中经常因异常剪接而失活,表明其参与人类恶性肿瘤。来自MDM2位点的剪接变体在培养中促进细胞生长并在体内加速肿瘤发生。表达这些剪接变体的人类癌症与晚期/转移相关,因此具有负面临床影响。尽管它们缺乏大多数p53结合结构域,但其活性大多依赖于p53,因为它们与野生型MDM2结合。p53位点产生的剪接异构体对患者生存具有有利(C末端的β/γ)或负面(N末端的Δ40、Δ133)影响。由于这些位点的致癌性可变剪接产物仅在癌细胞中表达,它们最终可能成为分子治疗的靶点。

相似文献

1
Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer.
Int J Cancer. 2016 Jul 1;139(1):33-41. doi: 10.1002/ijc.30003. Epub 2016 Feb 8.
3
Critical roles of DMP1 in human epidermal growth factor receptor 2/neu-Arf-p53 signaling and breast cancer development.
Cancer Res. 2010 Nov 15;70(22):9084-94. doi: 10.1158/0008-5472.CAN-10-0159. Epub 2010 Nov 9.
5
Human DMTF1β antagonizes DMTF1α regulation of the p14(ARF) tumor suppressor and promotes cellular proliferation.
Biochim Biophys Acta. 2015 Sep;1849(9):1198-208. doi: 10.1016/j.bbagrm.2015.07.009. Epub 2015 Jul 15.
6
Decreased Mdm2 expression inhibits tumor development and extends survival independent of Arf and dependent on p53.
PLoS One. 2012;7(9):e46148. doi: 10.1371/journal.pone.0046148. Epub 2012 Sep 28.
7
A novel mouse model of rhabdomyosarcoma underscores the dichotomy of MDM2-ALT1 function in vivo.
Oncogene. 2018 Jan 4;37(1):95-106. doi: 10.1038/onc.2017.282. Epub 2017 Sep 11.
8
Prognostic value of the hDMP1-ARF-Hdm2-p53 pathway in breast cancer.
Oncogene. 2013 Aug 29;32(35):4120-9. doi: 10.1038/onc.2012.423. Epub 2012 Oct 8.

引用本文的文献

2
MDM2- an indispensable player in tumorigenesis.
Mol Biol Rep. 2023 Aug;50(8):6871-6883. doi: 10.1007/s11033-023-08512-3. Epub 2023 Jun 14.
3
How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors.
Cancers (Basel). 2023 May 26;15(11):2918. doi: 10.3390/cancers15112918.
4
5
MiR-6838-5p facilitates the proliferation and invasion of renal cell carcinoma cells through inhibiting the DMTF1/ARF-p53 axis.
J Bioenerg Biomembr. 2021 Apr;53(2):191-202. doi: 10.1007/s10863-021-09888-2. Epub 2021 Mar 8.
7
Regulation of Canonical Oncogenic Signaling Pathways in Cancer via DNA Methylation.
Cancers (Basel). 2020 Oct 30;12(11):3199. doi: 10.3390/cancers12113199.
8
Survival of Lung Cancer Patients Dependent on the LOH Status for , , and .
Int J Mol Sci. 2020 Oct 27;21(21):7971. doi: 10.3390/ijms21217971.
9
Post-Translational Regulation of ARF: Perspective in Cancer.
Biomolecules. 2020 Aug 4;10(8):1143. doi: 10.3390/biom10081143.
10
Therapeutic Approaches Targeting Nucleolus in Cancer.
Cells. 2019 Sep 16;8(9):1090. doi: 10.3390/cells8091090.

本文引用的文献

1
Aberrant expression of cyclin D1 in cancer.
Sign Transduct Insights. 2015;4:1-13. doi: 10.4137/STI.S30306. Epub 2015 Sep 20.
2
Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer.
Genet Epigenet. 2015 Dec 2;7:19-32. doi: 10.4137/GEG.S35500. eCollection 2015.
3
Regulation of the p53 response and its relationship to cancer.
Biochem J. 2015 Aug 1;469(3):325-46. doi: 10.1042/BJ20150517.
4
Human DMTF1β antagonizes DMTF1α regulation of the p14(ARF) tumor suppressor and promotes cellular proliferation.
Biochim Biophys Acta. 2015 Sep;1849(9):1198-208. doi: 10.1016/j.bbagrm.2015.07.009. Epub 2015 Jul 15.
5
Transcription factors that interact with p53 and Mdm2.
Int J Cancer. 2016 Apr 1;138(7):1577-85. doi: 10.1002/ijc.29663. Epub 2015 Jul 14.
6
Forging a signature of in vivo senescence.
Nat Rev Cancer. 2015 Jul;15(7):397-408. doi: 10.1038/nrc3960.
7
Splicing factor SRSF1 negatively regulates alternative splicing of MDM2 under damage.
Nucleic Acids Res. 2015 Apr 30;43(8):4202-18. doi: 10.1093/nar/gkv223. Epub 2015 Apr 6.
9
Splice variants of MDM2 in oncogenesis.
Subcell Biochem. 2014;85:247-61. doi: 10.1007/978-94-017-9211-0_14.
10
p53: its mutations and their impact on transcription.
Subcell Biochem. 2014;85:71-90. doi: 10.1007/978-94-017-9211-0_4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验