Suppr超能文献

载细胞水凝胶/钛微杂交体:用于改善整合的金属植入物的位点特异性细胞递送。

Cell-laden hydrogel/titanium microhybrids: Site-specific cell delivery to metallic implants for improved integration.

作者信息

Koenig Geraldine, Ozcelik Hayriye, Haesler Lisa, Cihova Martina, Ciftci Sait, Dupret-Bories Agnes, Debry Christian, Stelzle Martin, Lavalle Philippe, Vrana Nihal Engin

机构信息

Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 Rue Humann, 67000 Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France.

NMI Natural and Medical Sciences Institute at the University of Tübingen, BioMEMS Group, Markwiesenstraße 55, D-72770 Reutlingen, Germany.

出版信息

Acta Biomater. 2016 Mar;33:301-10. doi: 10.1016/j.actbio.2016.01.023. Epub 2016 Jan 21.

Abstract

UNLABELLED

Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast gelling hydrogels have advantageous properties for in situ applications such as localisation of specific cells and growth factors at a target area without dispersion. The ability to control the cell types in different regions of an implant is important in applications where the target tissue (i) has structural heterogeneity (multiple cell types with a defined spatial configuration with respect to each other); (ii) has physical property gradients essential for its function (such as in the case of osteochondral tissue transition). Due to their near immediate gelation, such gels can also be used for site-specific modification of porous titanium structures, particularly for implants which would face different tissues at different locations. Herein, we describe a step by step design of a model system: the model cell-laden gel-containing porous titanium implants in the form of titanium microbead/hydrogel (maleimide-dextran or maleimide-PVA based) microhybrids. These systems enable the determination of the effect of titanium presence on gel properties and encapsulated cell behaviour as a miniaturized version of full-scale implants, providing a system compatible with conventional analysis methods. We used a fibroblast/vascular endothelial cell co-cultures as our model system and by utilising single microbeads we have quantified the effect of gel microenvironment (degradability, presence of RGD peptides within gel formulation) on cell behaviour and the effect of the titanium presence on cell behaviour and gel formation. Titanium presence slightly changed gel properties without hindering gel formation or affecting cell viability. Cells showed a preference to move towards the titanium beads and fibroblast proliferation was significantly higher in hybrids compared to gel only controls. The MMP (Matrix Metalloproteinase)-sensitive hydrogels induced sprouting by cells in co-culture configuration which was quantified by fluorescence microscopy, confocal microscopy and qRT-PCR (Quantitative Reverse transcription polymerase chain reaction). When the microhybrid up-scaled to 3D thick structures, cellular localisation in specific areas of the 3D titanium structures was achieved, without decreasing overall cell proliferation compared to titanium only scaffolds. Microhybrids of titanium and hydrogels are useful models for deciding the necessary modifications of metallic implants and they can be used as a modelling system for the study of tissue/titanium implant interactions.

STATEMENT OF SIGNIFICANCE

This article demonstrates a method to apply cell-laden hydrogels to porous titanium implants and a model of titanium/hydrogel interaction at micro-level using titanium microbeads. The feasibility of site-specific modification of titanium implants with cell-laden microgels has been demonstrated. Use of titanium microbeads in combination with hydrogels with conventional analysis techniques as described in the article can facilitate the characterisation of surface modification of titanium in a relevant model system.

摘要

未标注

多孔钛植入物广泛应用于牙科、骨科和耳鼻喉科领域,以改善植入物与宿主组织的整合。进一步改善与宿主整合的一个可能步骤是通过载细胞水凝胶将自体细胞整合到多孔钛结构中。快速凝胶化水凝胶对于原位应用具有有利特性,例如将特定细胞和生长因子定位在目标区域而不扩散。在植入物不同区域控制细胞类型的能力在以下应用中很重要:(i)目标组织具有结构异质性(多种细胞类型,彼此具有确定的空间配置);(ii)具有对其功能至关重要的物理性质梯度(例如在骨软骨组织过渡的情况下)。由于其几乎立即凝胶化,这种凝胶还可用于多孔钛结构的位点特异性修饰,特别是对于在不同位置面对不同组织的植入物。在此,我们描述了一个模型系统的逐步设计:以钛微珠/水凝胶(基于马来酰亚胺 - 葡聚糖或马来酰亚胺 - PVA)微杂交体形式的含模型载细胞凝胶的多孔钛植入物。这些系统能够确定钛的存在对凝胶性质和封装细胞行为的影响,作为全尺寸植入物的小型化版本,提供与传统分析方法兼容的系统。我们使用成纤维细胞/血管内皮细胞共培养作为我们的模型系统,并通过利用单个微珠,我们已经量化了凝胶微环境(降解性、凝胶配方中RGD肽的存在)对细胞行为的影响以及钛的存在对细胞行为和凝胶形成的影响。钛的存在略微改变了凝胶性质,但不妨碍凝胶形成或影响细胞活力。细胞表现出向钛珠移动的偏好,并且与仅凝胶对照相比,杂交体中的成纤维细胞增殖明显更高。MMP(基质金属蛋白酶)敏感水凝胶在共培养配置中诱导细胞发芽,这通过荧光显微镜、共聚焦显微镜和qRT - PCR(定量逆转录聚合酶链反应)进行量化。当微杂交体扩大到3D厚结构时,实现了细胞在3D钛结构特定区域的定位,与仅钛支架相比,总体细胞增殖没有降低。钛和水凝胶的微杂交体是用于确定金属植入物必要修饰的有用模型,并且它们可以用作研究组织/钛植入物相互作用的建模系统。

重要性声明

本文展示了一种将载细胞水凝胶应用于多孔钛植入物的方法以及使用钛微珠在微观层面研究钛/水凝胶相互作用的模型。已经证明了用载细胞微凝胶对钛植入物进行位点特异性修饰的可行性。如本文所述,将钛微珠与水凝胶结合使用传统分析技术可以促进在相关模型系统中对钛表面修饰的表征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验