Suppr超能文献

纳米和微载体改善神经再生医学策略中干细胞行为的应用:以亨廷顿病为例。

Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: Application to Huntington's disease.

机构信息

PRES LUNAM, University of Angers, F-49933 Angers, France; INSERM U1066, Micro et Nanomédecines Biomimétiques, 4 rue larrey, F-49933 Angers, France.

Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain.

出版信息

Biomaterials. 2016 Mar;83:347-62. doi: 10.1016/j.biomaterials.2015.12.008. Epub 2016 Jan 6.

Abstract

The potential treatments for neurodegenerative disorders will be revolutionized by the transplantation of stem cells or neuronal progenitors derived from these cells. It is however crucial to better monitor their proliferation, improve their survival and differentiation and hence ameliorate their engraftment after transplantation. To direct stem cell fate, a delicate control of gene expression through RNA interference (RNAi) is emerging as a safe epigenetic approach. The development of novel biomaterials (nano and microcarriers) capable of delivering proteins, nucleic acids and cells, open the possibility to regulate cell fate while achieving neuroprotection and neurorepair and could be applied to Huntington's disease. This review first provides an overview of stem cell therapy for the neurodegenerative disorder Huntington's disease. Within that context, an integrative discussion follows of the control of stem cell behaviour by RNAi delivered by different nanocarriers in vitro prior to their transplantation. Finally, combined in vivo strategies using stem cells, biomaterials and epigenetic cell regulation are reported.

摘要

通过移植源自这些细胞的干细胞或神经祖细胞,神经退行性疾病的潜在治疗方法将发生革命性变化。然而,至关重要的是更好地监测它们的增殖,提高它们的存活率和分化,并在移植后改善它们的植入。为了指导干细胞命运,通过 RNA 干扰 (RNAi) 对基因表达进行精细控制,作为一种安全的表观遗传方法正在出现。新型生物材料(纳米和微载体)的开发能够递送蛋白质、核酸和细胞,为调节细胞命运提供了可能性,同时实现神经保护和神经修复,并可应用于亨廷顿病。这篇综述首先概述了干细胞治疗神经退行性疾病亨廷顿病的方法。在这种情况下,接下来综合讨论了通过不同的纳米载体在体外递送 RNAi 来控制干细胞行为,然后再进行移植。最后,报告了使用干细胞、生物材料和表观遗传细胞调节的联合体内策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验