Suppr超能文献

判别式稀疏子空间学习及其在无监督特征选择中的应用。

Discriminative sparse subspace learning and its application to unsupervised feature selection.

作者信息

Zhou Nan, Cheng Hong, Pedrycz Witold, Zhang Yong, Liu Huaping

机构信息

Center for Robotics, School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6R 2V4, Canada; Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland.

出版信息

ISA Trans. 2016 Mar;61:104-118. doi: 10.1016/j.isatra.2015.12.011. Epub 2016 Jan 20.

Abstract

In order to efficiently use the intrinsic data information, in this study a Discriminative Sparse Subspace Learning (DSSL) model has been investigated for unsupervised feature selection. First, the feature selection problem is formulated as a subspace learning problem. In order to efficiently learn the discriminative subspace, we investigate the discriminative information in the subspace learning process. Second, a two-step TDSSL algorithm and a joint modeling JDSSL algorithm are developed to incorporate the clusters׳ assignment as the discriminative information. Then, a convergence analysis of these two algorithms is provided. A kernelized discriminative sparse subspace learning (KDSSL) method is proposed to handle the nonlinear subspace learning problem. Finally, extensive experiments are conducted on real-world datasets to show the superiority of the proposed approaches over several state-of-the-art approaches.

摘要

为了有效地利用内在数据信息,本研究对一种判别式稀疏子空间学习(DSSL)模型进行了研究,用于无监督特征选择。首先,将特征选择问题表述为子空间学习问题。为了有效地学习判别性子空间,我们在子空间学习过程中研究判别信息。其次,开发了一种两步TDSSL算法和一种联合建模JDSSL算法,将聚类分配作为判别信息纳入其中。然后,对这两种算法进行了收敛性分析。提出了一种核判别式稀疏子空间学习(KDSSL)方法来处理非线性子空间学习问题。最后,在真实世界数据集上进行了广泛的实验,以展示所提出方法相对于几种现有最先进方法的优越性。

相似文献

5
A Pareto-Based Sparse Subspace Learning Framework.一种基于帕累托的稀疏子空间学习框架。
IEEE Trans Cybern. 2019 Nov;49(11):3859-3872. doi: 10.1109/TCYB.2018.2849442. Epub 2018 Jul 23.
7
Subspace Sparse Discriminative Feature Selection.子空间稀疏判别特征选择
IEEE Trans Cybern. 2022 Jun;52(6):4221-4233. doi: 10.1109/TCYB.2020.3025205. Epub 2022 Jun 16.
8
Robust Structured Subspace Learning for Data Representation.鲁棒结构化子空间学习的数据表示。
IEEE Trans Pattern Anal Mach Intell. 2015 Oct;37(10):2085-98. doi: 10.1109/TPAMI.2015.2400461.
9
Unsupervised spike sorting based on discriminative subspace learning.基于判别子空间学习的无监督尖峰分类
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3784-8. doi: 10.1109/EMBC.2014.6944447.
10
Joint Feature Selection and Subspace Learning for Cross-Modal Retrieval.跨模态检索的联合特征选择与子空间学习。
IEEE Trans Pattern Anal Mach Intell. 2016 Oct;38(10):2010-23. doi: 10.1109/TPAMI.2015.2505311. Epub 2015 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验