Suppr超能文献

基于判别近似等距嵌入的无监督鲁棒判别子空间表示。

Unsupervised robust discriminative subspace representation based on discriminative approximate isometric embedding.

机构信息

School of Big Data and Computer Science, Guizhou normal University, Guiyang, 550025, China.

出版信息

Neural Netw. 2022 Nov;155:287-307. doi: 10.1016/j.neunet.2022.06.003. Epub 2022 Jun 30.

Abstract

Subspace learning has shown a tremendous potential in the fields of machine learning and computer vision due to its effectiveness. Subspace representation is a key subspace learning method that encodes subspace membership information. To effectively encode the subspace memberships of data, some structured prior constraints are imposed on the subspace representation, such as low-rank, sparse, and so on. To handle various noises, existing methods tend to separate a specific type of noise using a specific scheme to obtain robust subspace representation. When encountering diversified noises, their subspace-preserving property may not be guaranteed. To address this issue, we propose a novel unsupervised robust discriminative subspace representation to mitigate the impacts of diversified noises via discriminative approximate isometric embedding, rather than directly separating noises from the high-dimensional space, as done like the existing methods. To ensure the performance of our approach, we provide a crucial theorem, termed as noisy Johnson-Lindenstrauss theorem. Meanwhile, Laplacian rank constraint is imposed on the discriminative subspace representation to uncover the ground truth subspace memberships of noisy data and improve the graph connectivity of subspaces. Extensive experiments on several benchmark datasets and two large-scale datasets validate the effectiveness and robustness of our approach with respect to diversified noises.

摘要

子空间学习由于其有效性在机器学习和计算机视觉领域显示出巨大的潜力。子空间表示是一种关键的子空间学习方法,它对子空间成员信息进行编码。为了有效地编码数据的子空间成员信息,对子空间表示施加了一些结构化的先验约束,例如低秩、稀疏等。为了处理各种噪声,现有的方法倾向于使用特定的方案分离特定类型的噪声,以获得鲁棒子空间表示。当遇到多样化的噪声时,它们的子空间保持特性可能无法得到保证。为了解决这个问题,我们提出了一种新颖的无监督鲁棒子空间判别表示方法,通过判别近似等距嵌入来减轻多样化噪声的影响,而不是像现有方法那样直接将噪声从高维空间中分离出来。为了确保我们方法的性能,我们提供了一个关键的定理,称为有噪声的 Johnson-Lindenstrauss 定理。同时,在判别子空间表示上施加拉普拉斯秩约束,以揭示噪声数据的真实子空间成员信息,并提高子空间的图连通性。在几个基准数据集和两个大规模数据集上的广泛实验验证了我们的方法在处理多样化噪声方面的有效性和鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验