Beltran-Huarac Juan, Diaz-Diestra Daysi, Bsatee Mohammed, Wang Jingzhou, Jadwisienczak Wojciech M, Weiner Brad R, Morell Gerardo
Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA. Department of Physics, University of Puerto Rico, San Juan, PR 00936, USA.
Nanotechnology. 2016 Feb 26;27(8):085703. doi: 10.1088/0957-4484/27/8/085703. Epub 2016 Jan 25.
We report the tuning of the internal Mn photoluminescence (PL) transition of magnetically-ordered Sr-doped lanthanum manganite (LSMO)/Mn-doped zinc sulfide (ZnS:Mn) nanocomposites (NCs) by applying a static magnetic field in the range of 0-1 T below the critical temperature of ∼225 K. To do that, we have systematically fabricated LSMO/ZnS:Mn at different concentrations (1:1, 1:3, 1:5 and 1:10 wt%) via a straightforward solid-state reaction. X-ray diffraction and Raman analyses reveal that both phases coexist with a high degree of crystallinity and purity. Electron microscopy indicates that the NCs are almost spherical with an average crystal size of ∼6 nm, and that their surfaces are clean and smooth. The bifunctional character of LSMO/ZnS:Mn was evidenced by vibrating sample magnetometry and PL spectroscopy analyses, which show a marked ferromagnetic behavior and a broad, intense Mn orange emission band at room temperature. Moreover, the LSMO/ZnS:Mn at 1:3 wt% exhibits magneto-luminescent (ML) coupling below 225 K, and reaches the largest suppression of Mn-band PL intensity (up to ∼10%) at 150 K, when a magnetic field of 1.0 T is applied. The ML effect persists at magnetic fields as low as 0.2 T at 8 K, which can be explained by evoking a magnetic-ordering-induced spin-dependent restriction of the energy transfer to Mn states. No ML effect was observed in bare ZnS:Mn nanoparticles under the same experimental parameters. Our findings suggest that this NC can be considered as a new ML compound, similar to FeCo/InGaN-GaN and LSMO/ZnO NCs, useful as q-bits for quantum computation. The results presented here bring forth new avenues to better understand the interaction between semiconductors and perovskites, and exploit their synergistic effects in magneto-optics, spintronics and nanoelectronics.
我们我们我们我们报道了在低于约225 K的临界温度下,通过施加0 - 1 T范围内的静磁场来调节磁有序的掺锶镧锰氧化物(LSMO)/掺锰硫化锌(ZnS:Mn)纳米复合材料(NCs)内部的锰光致发光(PL)跃迁。为此,我们通过简单的固态反应系统地制备了不同浓度(1:1、1:3、1:5和1:10 wt%)的LSMO/ZnS:Mn。X射线衍射和拉曼分析表明,两相以高结晶度和纯度共存。电子显微镜表明,NCs几乎呈球形,平均晶体尺寸约为6 nm,且其表面干净光滑。振动样品磁强计和PL光谱分析证明了LSMO/ZnS:Mn的双功能特性,其在室温下表现出明显的铁磁行为和宽且强的锰橙色发射带。此外,1:3 wt%的LSMO/ZnS:Mn在225 K以下表现出磁光致发光(ML)耦合,当施加1.0 T磁场时,在150 K时达到锰带PL强度的最大抑制(高达约10%)。在8 K时,ML效应在低至0.2 T的磁场下仍然存在,这可以通过磁有序诱导的自旋相关能量转移到锰态的限制来解释。在相同实验参数下,未在裸ZnS:Mn纳米颗粒中观察到ML效应。我们的研究结果表明,这种NC可以被视为一种新型的ML化合物,类似于FeCo/InGaN - GaN和LSMO/ZnO NCs,可用作量子计算的量子比特。这里展示的结果为更好地理解半导体与钙钛矿之间的相互作用以及在磁光、自旋电子学和纳米电子学中利用它们的协同效应开辟了新途径。