Wei Guanghong, Xi Wenhui, Nussinov Ruth, Ma Buyong
State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University , Shanghai, P. R. China.
Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute , Frederick, Maryland 21702, United States.
Chem Rev. 2016 Jun 8;116(11):6516-51. doi: 10.1021/acs.chemrev.5b00562. Epub 2016 Jan 25.
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
所有可溶性蛋白质都具有构象集合,这些构象集合共同构成天然状态。它们在水中的波动是内在的热力学现象,并且这些状态在能量景观上的分布由统计热力学决定;然而,它们经过优化以执行其生物学功能。在这篇综述中,我们简要描述蛋白质构象集合自由能景观研究的进展。近年来,实验方法(核磁共振、小角X射线散射、单分子光谱和冷冻电子显微镜)和计算方法(副本交换分子动力学、元动力学和马尔可夫状态模型)都取得了很大进展。这些方法解决了高度灵活且异质的蛋白质集合的具有挑战性的表征问题。我们关注蛋白质构象分布的结构方面,从单结构域和多结构域蛋白质、内在无序蛋白质的集体运动,到多蛋白复合物。重要的是,我们强调最近的研究,这些研究说明了在拥挤的细胞环境中蛋白质构象集合的功能调节。我们关注集合在识别小分子和大分子(蛋白质和RNA/DNA)中的作用,并强调酶催化中蛋白质动力学的新兴概念。总体而言,蛋白质集合将基本的物理化学原理与蛋白质行为以及细胞网络及其调节联系起来。