Suppr超能文献

利用分子动力学模拟、机器学习、冷冻电镜和 NMR 光谱学来预测和验证蛋白质动力学。

Utilizing Molecular Dynamics Simulations, Machine Learning, Cryo-EM, and NMR Spectroscopy to Predict and Validate Protein Dynamics.

机构信息

Department of Molecular Medicine, Scripps Research, San Diego, CA 92037, USA.

Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.

出版信息

Int J Mol Sci. 2024 Sep 8;25(17):9725. doi: 10.3390/ijms25179725.

Abstract

Protein dynamics play a crucial role in biological function, encompassing motions ranging from atomic vibrations to large-scale conformational changes. Recent advancements in experimental techniques, computational methods, and artificial intelligence have revolutionized our understanding of protein dynamics. Nuclear magnetic resonance spectroscopy provides atomic-resolution insights, while molecular dynamics simulations offer detailed trajectories of protein motions. Computational methods applied to X-ray crystallography and cryo-electron microscopy (cryo-EM) have enabled the exploration of protein dynamics, capturing conformational ensembles that were previously unattainable. The integration of machine learning, exemplified by AlphaFold2, has accelerated structure prediction and dynamics analysis. These approaches have revealed the importance of protein dynamics in allosteric regulation, enzyme catalysis, and intrinsically disordered proteins. The shift towards ensemble representations of protein structures and the application of single-molecule techniques have further enhanced our ability to capture the dynamic nature of proteins. Understanding protein dynamics is essential for elucidating biological mechanisms, designing drugs, and developing novel biocatalysts, marking a significant paradigm shift in structural biology and drug discovery.

摘要

蛋白质动力学在生物学功能中起着至关重要的作用,包括从原子振动到大规模构象变化的各种运动。实验技术、计算方法和人工智能的最新进展彻底改变了我们对蛋白质动力学的理解。核磁共振波谱提供了原子分辨率的见解,而分子动力学模拟则提供了蛋白质运动的详细轨迹。应用于 X 射线晶体学和冷冻电子显微镜(cryo-EM)的计算方法已经能够探索蛋白质动力学,捕获以前无法获得的构象集合。以 AlphaFold2 为代表的机器学习的整合加速了结构预测和动力学分析。这些方法揭示了蛋白质动力学在变构调节、酶催化和固有无序蛋白质中的重要性。向蛋白质结构的集合表示的转变以及单分子技术的应用进一步增强了我们捕捉蛋白质动态性质的能力。理解蛋白质动力学对于阐明生物学机制、设计药物和开发新型生物催化剂至关重要,这标志着结构生物学和药物发现领域的重大范式转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e175/11395565/78a3dc76a095/ijms-25-09725-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验