Suppr超能文献

预测2型糖尿病患者磺脲类药物治疗结局的遗传标志物:当前证据及临床应用面临的挑战

Genetic markers predicting sulphonylurea treatment outcomes in type 2 diabetes patients: current evidence and challenges for clinical implementation.

作者信息

Loganadan N K, Huri H Z, Vethakkan S R, Hussein Z

机构信息

Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.

Clinical Investigation Centre, University of Malaya Medical Centre, Kuala Lumpur, Malaysia.

出版信息

Pharmacogenomics J. 2016 Jun;16(3):209-19. doi: 10.1038/tpj.2015.95. Epub 2016 Jan 26.

Abstract

The clinical response to sulphonylurea, an oral antidiabetic agent often used in combination with metformin to control blood glucose in type 2 diabetes (T2DM) patients, has been widely associated with a number of gene polymorphisms, particularly those involved in insulin release. We have reviewed the genetic markers of CYP2C9, ABCC8, KCNJ11, TCF7L2 (transcription factor 7-like 2), IRS-1 (insulin receptor substrate-1), CDKAL1, CDKN2A/2B, KCNQ1 and NOS1AP (nitric oxide synthase 1 adaptor protein) genes that predict treatment outcomes of sulphonylurea therapy. A convincing pattern for poor sulphonylurea response was observed in Caucasian T2DM patients with rs7903146 and rs1801278 polymorphisms of the TCF7L2 and IRS-1 genes, respectively. However, limitations in evaluating the available studies including dissimilarities in study design, definitions of clinical end points, sample sizes and types and doses of sulphonylureas used as well as ethnic variability make the clinical applications challenging. Future studies need to address these limitations to develop personalized sulphonylurea medicine for T2DM management.

摘要

磺脲类药物是一种常用于与二甲双胍联合控制2型糖尿病(T2DM)患者血糖的口服抗糖尿病药物,其临床反应与许多基因多态性广泛相关,尤其是那些参与胰岛素释放的基因多态性。我们综述了CYP2C9、ABCC8、KCNJ11、TCF7L2(转录因子7样2)、IRS-1(胰岛素受体底物-1)、CDKAL1、CDKN2A/2B、KCNQ1和NOS1AP(一氧化氮合酶1衔接蛋白)基因的遗传标记,这些基因可预测磺脲类药物治疗的效果。在分别具有TCF7L2基因rs7903146多态性和IRS-1基因rs1801278多态性的白种人T2DM患者中,观察到了磺脲类药物反应不佳的令人信服的模式。然而,评估现有研究存在局限性,包括研究设计的差异、临床终点的定义、样本量以及所用磺脲类药物的类型和剂量,以及种族差异,这使得临床应用具有挑战性。未来的研究需要解决这些局限性,以开发用于T2DM管理的个性化磺脲类药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验