文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

From Single-Core Nanoparticles in Ferrofluids to Multi-Core Magnetic Nanocomposites: Assembly Strategies, Structure, and Magnetic Behavior.

作者信息

Krasia-Christoforou Theodora, Socoliuc Vlad, Knudsen Kenneth D, Tombácz Etelka, Turcu Rodica, Vékás Ladislau

机构信息

Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, Cyprus.

Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy-Timisoara Branch, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania.

出版信息

Nanomaterials (Basel). 2020 Oct 31;10(11):2178. doi: 10.3390/nano10112178.


DOI:10.3390/nano10112178
PMID:33142887
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7692798/
Abstract

Iron oxide nanoparticles are the basic components of the most promising magnetoresponsive nanoparticle systems for medical (diagnosis and therapy) and bio-related applications. Multi-core iron oxide nanoparticles with a high magnetic moment and well-defined size, shape, and functional coating are designed to fulfill the specific requirements of various biomedical applications, such as contrast agents, heating mediators, drug targeting, or magnetic bioseparation. This review article summarizes recent results in manufacturing multi-core magnetic nanoparticle (MNP) systems emphasizing the synthesis procedures, starting from ferrofluids (with single-core MNPs) as primary materials in various assembly methods to obtain multi-core magnetic particles. The synthesis and functionalization will be followed by the results of advanced physicochemical, structural, and magnetic characterization of multi-core particles, as well as single- and multi-core particle size distribution, morphology, internal structure, agglomerate formation processes, and constant and variable field magnetic properties. The review provides a comprehensive insight into the controlled synthesis and advanced structural and magnetic characterization of multi-core magnetic composites envisaged for nanomedicine and biotechnology.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/460fd7feb66e/nanomaterials-10-02178-g032a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/331826ff3099/nanomaterials-10-02178-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/9fec7f536783/nanomaterials-10-02178-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/eb7d49dd419b/nanomaterials-10-02178-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/1be2703b1b94/nanomaterials-10-02178-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/0847bdead16c/nanomaterials-10-02178-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/63bf717bfc01/nanomaterials-10-02178-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/ac2896dbabfe/nanomaterials-10-02178-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/677e9a2ab03e/nanomaterials-10-02178-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/4ff41ddc49f2/nanomaterials-10-02178-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/b1125ca9299a/nanomaterials-10-02178-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/9a8a2babf1fa/nanomaterials-10-02178-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/f26077e18994/nanomaterials-10-02178-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/6fe3c256ce14/nanomaterials-10-02178-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/08c442de93b5/nanomaterials-10-02178-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/900e19f5e738/nanomaterials-10-02178-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/b48f454dac9f/nanomaterials-10-02178-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/f8260c6f8e0a/nanomaterials-10-02178-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/7459c27b3119/nanomaterials-10-02178-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/a09923dd4388/nanomaterials-10-02178-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/69927788ac8b/nanomaterials-10-02178-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/375f8bf9ceca/nanomaterials-10-02178-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/ae362018ba5a/nanomaterials-10-02178-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/5a12411e9901/nanomaterials-10-02178-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/bde16b54ba11/nanomaterials-10-02178-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/dd2680553f18/nanomaterials-10-02178-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/ecc32322f041/nanomaterials-10-02178-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/a62137a2e85b/nanomaterials-10-02178-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/16bce9af6bc3/nanomaterials-10-02178-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/9cd3e7268cb6/nanomaterials-10-02178-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/86f3bf928619/nanomaterials-10-02178-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/dbc71defc11e/nanomaterials-10-02178-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/460fd7feb66e/nanomaterials-10-02178-g032a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/331826ff3099/nanomaterials-10-02178-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/9fec7f536783/nanomaterials-10-02178-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/eb7d49dd419b/nanomaterials-10-02178-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/1be2703b1b94/nanomaterials-10-02178-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/0847bdead16c/nanomaterials-10-02178-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/63bf717bfc01/nanomaterials-10-02178-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/ac2896dbabfe/nanomaterials-10-02178-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/677e9a2ab03e/nanomaterials-10-02178-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/4ff41ddc49f2/nanomaterials-10-02178-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/b1125ca9299a/nanomaterials-10-02178-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/9a8a2babf1fa/nanomaterials-10-02178-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/f26077e18994/nanomaterials-10-02178-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/6fe3c256ce14/nanomaterials-10-02178-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/08c442de93b5/nanomaterials-10-02178-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/900e19f5e738/nanomaterials-10-02178-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/b48f454dac9f/nanomaterials-10-02178-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/f8260c6f8e0a/nanomaterials-10-02178-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/7459c27b3119/nanomaterials-10-02178-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/a09923dd4388/nanomaterials-10-02178-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/69927788ac8b/nanomaterials-10-02178-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/375f8bf9ceca/nanomaterials-10-02178-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/ae362018ba5a/nanomaterials-10-02178-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/5a12411e9901/nanomaterials-10-02178-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/bde16b54ba11/nanomaterials-10-02178-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/dd2680553f18/nanomaterials-10-02178-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/ecc32322f041/nanomaterials-10-02178-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/a62137a2e85b/nanomaterials-10-02178-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/16bce9af6bc3/nanomaterials-10-02178-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/9cd3e7268cb6/nanomaterials-10-02178-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/86f3bf928619/nanomaterials-10-02178-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/dbc71defc11e/nanomaterials-10-02178-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/7692798/460fd7feb66e/nanomaterials-10-02178-g032a.jpg

相似文献

[1]
From Single-Core Nanoparticles in Ferrofluids to Multi-Core Magnetic Nanocomposites: Assembly Strategies, Structure, and Magnetic Behavior.

Nanomaterials (Basel). 2020-10-31

[2]
Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magnetoresponsive nanosystems.

Biochem Biophys Res Commun. 2015-12-18

[3]
Advanced biomedical applications of iron oxide nanostructures based ferrofluids.

Nanotechnology. 2021-7-26

[4]
Nanoparticle architecture preserves magnetic properties during coating to enable robust multi-modal functionality.

Sci Rep. 2018-8-23

[5]
Micromixer Synthesis Platform for a Tuneable Production of Magnetic Single-Core Iron Oxide Nanoparticles.

Nanomaterials (Basel). 2020-9-15

[6]
Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications.

Dalton Trans. 2015-2-21

[7]
Polymer/Iron Oxide Nanoparticle Composites--A Straight Forward and Scalable Synthesis Approach.

Int J Mol Sci. 2015-8-20

[8]
Magnetic nanoparticles in nanomedicine: a review of recent advances.

Nanotechnology. 2019-9-6

[9]
Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents.

ACS Nano. 2012-11-29

[10]
Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles.

J Nanosci Nanotechnol. 2011-3

引用本文的文献

[1]
Microwave assisted solvothermal green synthesis of FeO nanoparticles using sea buckthorn for multiple myeloma and monocytic leukemia treatment.

Sci Rep. 2025-7-16

[2]
Evaluating Manganese-Doped Magnetic Nanoflowers for Biocompatibility and In Vitro Magnetic Hyperthermia Efficacy.

Pharmaceutics. 2025-3-18

[3]
Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization.

Adv Sci (Weinh). 2025-4

[4]
Cu immobilized on MgZnFeO nanoparticles as a green catalyst in the synthesis of mono and bis-polyhydroquinolines.

Heliyon. 2024-9-4

[5]
Stability and Thermophysical Properties of GNP-FeO Hybrid Nanofluid: Effect of Volume Fraction and Temperature.

Nanomaterials (Basel). 2023-3-31

[6]
Calculation of the Maximum Temperature of Diester-Based Magnetic Fluid Layers in High-Speed Seals.

Nanomaterials (Basel). 2023-3-11

[7]
Advanced analysis of magnetic nanoflower measurements to leverage their use in biomedicine.

Nanoscale Adv. 2021-2-8

[8]
Recent Advances in Gadolinium Based Contrast Agents for Bioimaging Applications.

Nanomaterials (Basel). 2021-9-20

[9]
Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering.

Nanomaterials (Basel). 2021-9-8

[10]
Bioinspired Magnetic Nanochains for Medicine.

Pharmaceutics. 2021-8-16

本文引用的文献

[1]
A code with a twist: supraparticle microrod composites with direction dependent optical properties as anti-counterfeit labels.

Nanoscale Adv. 2019-1-31

[2]
Nanofibers with diameter below one nanometer from electrospinning.

RSC Adv. 2018-1-26

[3]
Polymer-Assisted Magnetic Nanoparticle Assemblies for Biomedical Applications.

ACS Appl Bio Mater. 2020-1-21

[4]
Static magnetic response of multicore particles.

Phys Rev E. 2020-9

[5]
Brave new world revisited: Focus on nanomedicine.

Biochem Biophys Res Commun. 2020-11-26

[6]
Inkjet printing as a deposition and patterning tool for polymers and inorganic particles.

Soft Matter. 2008-3-20

[7]
Review: Remotely controlled magneto-regulation of therapeutics from magnetoelastic gel matrices.

Biotechnol Adv. 2020-11-15

[8]
An Approach for Magnetic Halloysite Nanocomposite with Selective Loading of Superparamagnetic Magnetite Nanoparticles in the Lumen.

Inorg Chem. 2020-8-12

[9]
The benefits of a Bayesian analysis for the characterization of magnetic nanoparticles.

Nanotechnology. 2020-10-23

[10]
Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications.

Nanoscale. 2020-7-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索