Mehra Rukmankesh, Rani Chitra, Mahajan Priya, Vishwakarma Ram Ashrey, Khan Inshad Ali, Nargotra Amit
Discovery Informatics, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India.
Clinical Microbiology, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India.
ACS Comb Sci. 2016 Feb 8;18(2):100-16. doi: 10.1021/acscombsci.5b00019. Epub 2016 Jan 28.
Mycobacterium tuberculosis (Mtb) infections are causing serious health concerns worldwide. Antituberculosis drug resistance threatens the current therapies and causes further need to develop effective antituberculosis therapy. GlmU represents an interesting target for developing novel Mtb drug candidates. It is a bifunctional acetyltransferase/uridyltransferase enzyme that catalyzes the biosynthesis of UDP-N-acetyl-glucosamine (UDP-GlcNAc) from glucosamine-1-phosphate (GlcN-1-P). UDP-GlcNAc is a substrate for the biosynthesis of lipopolysaccharide and peptidoglycan that are constituents of the bacterial cell wall. In the current study, structure and ligand based computational models were developed and rationally applied to screen a drug-like compound repository of 20,000 compounds procured from ChemBridge DIVERSet database for the identification of probable inhibitors of Mtb GlmU. The in vitro evaluation of the in silico identified inhibitor candidates resulted in the identification of 15 inhibitory leads of this target. Literature search of these leads through SciFinder and their similarity analysis with the PubChem training data set (AID 1376) revealed the structural novelty of these hits with respect to Mtb GlmU. IC50 of the most potent identified inhibitory lead (5810599) was found to be 9.018 ± 0.04 μM. Molecular dynamics (MD) simulation of this inhibitory lead (5810599) in complex with protein affirms the stability of the lead within the binding pocket and also emphasizes on the key interactive residues for further designing. Binding site analysis of the acetyltransferase pocket with respect to the identified structural moieties provides a thorough analysis for carrying out the lead optimization studies.
结核分枝杆菌(Mtb)感染在全球范围内引发了严重的健康问题。抗结核药物耐药性威胁着当前的治疗方法,进一步促使人们开发有效的抗结核疗法。GlmU是开发新型Mtb候选药物的一个有趣靶点。它是一种双功能乙酰转移酶/尿苷转移酶,催化从1-磷酸葡萄糖胺(GlcN-1-P)生物合成UDP-N-乙酰葡萄糖胺(UDP-GlcNAc)。UDP-GlcNAc是脂多糖和肽聚糖生物合成的底物,而脂多糖和肽聚糖是细菌细胞壁的组成成分。在本研究中,基于结构和配体的计算模型被开发出来,并合理应用于筛选从ChemBridge DIVERSet数据库采购的20000种化合物的类药物化合物库,以鉴定Mtb GlmU的潜在抑制剂。对计算机虚拟筛选出的抑制剂候选物进行体外评估,结果鉴定出该靶点的15个抑制性先导化合物。通过SciFinder对这些先导化合物进行文献检索,并与PubChem训练数据集(AID 1376)进行相似性分析,揭示了这些命中化合物相对于Mtb GlmU的结构新颖性。发现最有效的已鉴定抑制性先导化合物(5810599)的IC50为9.018±0.04μM。该抑制性先导化合物(5810599)与蛋白质复合物的分子动力学(MD)模拟证实了该先导化合物在结合口袋内的稳定性,并强调了进一步设计的关键相互作用残基。针对已鉴定的结构部分对乙酰转移酶口袋进行结合位点分析,为进行先导化合物优化研究提供了全面的分析。