Suppr超能文献

磷酸糖介导的肽聚糖前体合成抑制作用。

Sugar phosphate-mediated inhibition of peptidoglycan precursor synthesis.

作者信息

Keller Megan R, Soni Vijay, Brown Megan, Rosch Kelly M, Saleh Anas, Rhee Kyu, Doerr Tobias

机构信息

Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.

Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca NY 14853, USA.

出版信息

bioRxiv. 2024 Nov 14:2024.11.13.623475. doi: 10.1101/2024.11.13.623475.

Abstract

Antibiotic tolerance, the widespread ability of diverse pathogenic bacteria to sustain viability in the presence of typically bactericidal antibiotics for extended time periods, is an understudied steppingstone towards antibiotic resistance. The Gram-negative pathogen , the causative agent of cholera, is highly tolerant to β-lactam antibiotics. We previously found that the disruption of glycolysis, via deletion of (, glucose-6-phosphate isomerase), resulted in significant cell wall damage and increased sensitivity towards β-lactam antibiotics. Here, we uncover the mechanism of this resulting damage. We find that glucose causes growth inhibition, partial lysis, and a damaged cell envelope in Δ. Supplementation with N-acetylglucosamine, but not other carbon sources (either from upper glycolysis, TCA cycle intermediates, or cell wall precursors) restored growth, re-established antibiotic resistance towards β-lactams, and recovered cellular morphology of a mutant exposed to glucose. Targeted metabolomics revealed the cell wall precursor synthetase enzyme GlmU (, coding for the bifunctional enzyme that converts glucosamine-1P to UDP-GlcNAc) as a critical bottleneck and mediator of glucose toxicity in Δ. assays of GlmU revealed that sugar phosphates (primarily glucose-1-phosphate) inhibit the acetyltransferase activity of GlmU (likely competitively), resulting in compromised PG and LPS biosynthesis. These findings identify GlmU as a critical branchpoint enzyme between central metabolism and cell envelope integrity and reveal the molecular mechanism of Δ glucose toxicity in .

摘要

抗生素耐受性是多种致病细菌在通常具有杀菌作用的抗生素存在下长时间维持生存能力的广泛现象,是通向抗生素耐药性的一个研究不足的阶段。革兰氏阴性病原体霍乱弧菌是霍乱的病原体,对β-内酰胺类抗生素具有高度耐受性。我们之前发现,通过缺失(编码葡萄糖-6-磷酸异构酶的)导致糖酵解中断,会造成显著的细胞壁损伤,并增加对β-内酰胺类抗生素的敏感性。在此,我们揭示了这种损伤产生的机制。我们发现葡萄糖会导致缺失菌株生长受抑制、部分裂解以及细胞包膜受损。补充N-乙酰葡糖胺,但不是其他碳源(无论是来自糖酵解上游、三羧酸循环中间体还是细胞壁前体),可恢复生长,重新建立对β-内酰胺类抗生素的耐药性,并恢复暴露于葡萄糖的缺失突变体的细胞形态。靶向代谢组学揭示细胞壁前体合成酶GlmU(编码将葡糖胺-1-磷酸转化为UDP-GlcNAc的双功能酶)是缺失菌株中葡萄糖毒性的关键瓶颈和介质。对GlmU的检测表明,糖磷酸酯(主要是葡萄糖-1-磷酸)抑制GlmU的乙酰转移酶活性(可能是竞争性抑制),导致肽聚糖和脂多糖生物合成受损。这些发现确定GlmU是中心代谢与细胞包膜完整性之间的关键分支点酶,并揭示了霍乱弧菌缺失菌株葡萄糖毒性的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b79e/11601392/ff70699edc26/nihpp-2024.11.13.623475v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验