Kishi Satoru, Magalhães Tiago A, Cerci Rodrigo J, Matheson Matthew B, Vavere Andrea, Tanami Yutaka, Kitslaar Pieter H, George Richard T, Brinker Jeffrey, Miller Julie M, Clouse Melvin E, Lemos Pedro A, Niinuma Hiroyuki, Reiber Johan H C, Rochitte Carlos E, Rybicki Frank J, Di Carli Marcelo F, Cox Christopher, Lima Joao A C, Arbab-Zadeh Armin
Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Department of Medicine, Division of Cardiology, Catholic University of Paraná (PUC-PR), Brazil.
J Cardiovasc Comput Tomogr. 2016 Mar-Apr;10(2):121-7. doi: 10.1016/j.jcct.2016.01.005. Epub 2016 Jan 14.
Total atherosclerotic plaque burden assessment by CT angiography (CTA) is a promising tool for diagnosis and prognosis of coronary artery disease (CAD) but its validation is restricted to small clinical studies. We tested the feasibility of semi-automatically derived coronary atheroma burden assessment for identifying patients with hemodynamically significant CAD in a large cohort of patients with heterogenous characteristics.
This study focused on the CTA component of the CORE320 study population. A semi-automated contour detection algorithm quantified total coronary atheroma volume defined as the difference between vessel and lumen volume. Percent atheroma volume (PAV = [total atheroma volume/total vessel volume] × 100) was the primary metric for assessment (n = 374). The area under the receiver operating characteristic curve (AUC) determined the diagnostic accuracy for identifying patients with hemodynamically significant CAD defined as ≥50% stenosis by quantitative coronary angiography and associated myocardial perfusion abnormality by SPECT.
Of 374 patients, 139 (37%) had hemodynamically significant CAD. The AUC for PAV was 0.78 (95% confidence interval [CI] 0.73-0.83) compared with 0.84 [0.79-0.88] by standard expert CTA interpretation (p = 0.02). Accuracy for both CTA (0.91 [0.87, 0.96]) and PAV (0.86 [0.81-0.91]) increased after excluding patients with history of CAD (p < 0.01 for both). Bland-Altman analysis revealed good agreement between two observers (bias of 280.2 mm(3) [161.8, 398.7]).
A semi-automatically derived index of total coronary atheroma volume yields good accuracy for identifying patients with hemodynamically significant CAD, though marginally inferior to CTA expert reading. These results convey promise for rapid, reliable evaluation of clinically relevant CAD.
通过CT血管造影(CTA)评估动脉粥样硬化斑块总负荷是诊断和预测冠状动脉疾病(CAD)的一种有前景的工具,但其验证仅限于小型临床研究。我们在一大群具有异质性特征的患者中测试了半自动得出的冠状动脉粥样硬化负荷评估在识别具有血流动力学显著意义的CAD患者中的可行性。
本研究聚焦于CORE320研究人群的CTA部分。一种半自动轮廓检测算法对总冠状动脉粥样硬化体积进行量化,该体积定义为血管体积与管腔体积之差。粥样硬化体积百分比(PAV = [总粥样硬化体积/总血管体积]×100)是评估的主要指标(n = 374)。受试者操作特征曲线(ROC)下面积(AUC)确定了识别具有血流动力学显著意义的CAD患者的诊断准确性,这些患者通过定量冠状动脉造影定义为狭窄≥50%,并通过单光子发射计算机断层扫描(SPECT)显示相关心肌灌注异常。
在374例患者中,139例(37%)具有血流动力学显著意义的CAD。PAV的AUC为0.78(95%置信区间[CI] 0.73 - 0.83),而标准专家CTA解读的AUC为0.84 [0.79 - 0.88](p = 0.02)。排除有CAD病史的患者后,CTA(0.91 [0.87, 0.96])和PAV(0.86 [0.81 - 0.91])的准确性均有所提高(两者p < 0.01)。布兰德 - 奥特曼分析显示两名观察者之间具有良好的一致性(偏差为280.2 mm³ [161.8, 398.7])。
半自动得出的总冠状动脉粥样硬化体积指数在识别具有血流动力学显著意义的CAD患者方面具有良好的准确性,尽管略逊于CTA专家解读。这些结果为临床相关CAD的快速、可靠评估带来了希望。