Suppr超能文献

用于临床前体内光学成像的基于切伦科夫发光和液体闪烁的混合光成像

Hybrid Light Imaging Using Cerenkov Luminescence and Liquid Scintillation for Preclinical Optical Imaging In Vivo.

作者信息

Shimamoto Masako, Gotoh Kumiko, Hasegawa Koki, Kojima Akihiro

机构信息

Department of Radioisotope Science, Graduate School of Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.

Department of Radioisotope Science, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.

出版信息

Mol Imaging Biol. 2016 Aug;18(4):500-9. doi: 10.1007/s11307-016-0928-y.

Abstract

PURPOSE

Cerenkov luminescence imaging (CLI) has recently emerged as a molecular imaging modality for radionuclides emitting β-particles. The aim of this study was to develop a hybrid light imaging (HLI) technique using a liquid scintillator to assist CLI by increasing the optical signal intensity from both β-particle and γ-ray emitting radionuclides located at deep regions in vivo.

PROCEDURES

A commercial optical imaging system was employed to collect all images by HLI and CLI. To investigate the performance characteristics of HLI with a commercially available liquid scintillator (Emulsifier-safe), phantom experiments were conducted for two typical β-particle and γ-ray emitters, sodium iodide (Na[(131)I]I) and 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG), respectively. To evaluate the feasibility of HLI for in vivo imaging, HLI was applied to a Na[(131)I]I injected nu/nu mouse and an [(18)F]FDG injected Balb-c mouse and compared with CLI alone.

RESULTS

Measured HLI wavelength spectra with Emulsifier-safe showed higher signal intensities than for CLI at 500-600 nm. For material preventing light transmission of 12-mm thickness, CLI imaging provided quite low intensity and obscure signals of the source. However, despite degraded spatial resolution, HLI imaging provided sustained visualization of the source shape, with signal intensities 10-14 times higher than for CLI at 10-mm thickness. Furthermore, at 0, 4, and 8-mm material thicknesses, HLI showed a strong correlation between Na[(131)I]I or [(18)F]FDG radioactivity and signal intensity, as for CLI. In vivo studies also demonstrated that HLI could successfully visualize Na[(131)I]I uptake in the mouse thyroid gland in the prone position and [(18)F]FDG accumulation in the heart in the supine position, which were not observed with CLI.

CONCLUSION

Our preliminary studies suggest that HLI can provide enhanced imaging of a β-particle probe emitting together with γ-rays at deep tissue locations. HLI may be a promising imaging technique to assist with preclinical in vivo imaging using CLI.

摘要

目的

切伦科夫发光成像(CLI)最近已成为一种用于发射β粒子的放射性核素的分子成像方式。本研究的目的是开发一种混合光成像(HLI)技术,使用液体闪烁体通过增加位于体内深部区域的发射β粒子和γ射线的放射性核素的光信号强度来辅助CLI。

程序

使用商业光学成像系统通过HLI和CLI收集所有图像。为了研究使用市售液体闪烁体(Emulsifier-safe)的HLI的性能特征,分别针对两种典型的β粒子和γ射线发射体碘化钠(Na[(131)I]I)和2-脱氧-2-[(18)F]氟-D-葡萄糖([(18)F]FDG)进行了体模实验。为了评估HLI用于体内成像的可行性,将HLI应用于注射了Na[(131)I]I的nu/nu小鼠和注射了[(18)F]FDG的Balb-c小鼠,并与单独的CLI进行比较。

结果

使用Emulsifier-safe测量的HLI波长光谱在500 - 600 nm处显示出比CLI更高的信号强度。对于厚度为12 mm的光传输阻挡材料,CLI成像提供的源强度相当低且信号模糊。然而,尽管空间分辨率有所下降,但HLI成像仍能持续显示源的形状,在10 mm厚度时信号强度比CLI高10 - 14倍。此外,在材料厚度为0、4和8 mm时,HLI显示出与CLI一样,Na[(131)I]I或[(18)F]FDG放射性与信号强度之间有很强的相关性。体内研究还表明,HLI能够成功地在俯卧位小鼠甲状腺中可视化Na[(131)I]I的摄取,在仰卧位小鼠心脏中可视化[(18)F]FDG的蓄积,而CLI未观察到这些情况。

结论

我们的初步研究表明,HLI可以在深部组织位置对与γ射线一起发射的β粒子探针进行增强成像。HLI可能是一种有前景的成像技术,可辅助使用CLI进行临床前体内成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验