Suppr超能文献

切伦科夫成像——分子成像的一种新方式。

Cerenkov imaging - a new modality for molecular imaging.

作者信息

Thorek Daniel Lj, Robertson Robbie, Bacchus Wassifa A, Hahn Jaeseung, Rothberg Julie, Beattie Bradley J, Grimm Jan

机构信息

Department of Radiology, Memorial Sloan-Kettering Cancer Center New York, New York.

出版信息

Am J Nucl Med Mol Imaging. 2012;2(2):163-73. Epub 2012 Mar 28.

Abstract

Cerenkov luminescence imaging (CLI) is an emerging hybrid modality that utilizes the light emission from many commonly used medical isotopes. Cerenkov radiation (CR) is produced when charged particles travel through a dielectric medium faster than the speed of light in that medium. First described in detail nearly 100 years ago, CR has only recently applied for biomedical imaging purposes. The modality is of considerable interest as it enables the use of widespread luminescence imaging equipment to visualize clinical diagnostic (all PET radioisotopes) and many therapeutic radionuclides. The amount of light detected in CLI applications is significantly lower than other that in other optical imaging techniques such as bioluminescence and fluorescence. However, significant advantages include the use of approved radiotracers and lack of an incident light source, resulting in high signal to background ratios. As well, multiple subjects may be imaged concurrently (up to 5 in common bioluminescent equipment), conferring both cost and time benefits. This review summarizes the field of Cerenkov luminescence imaging to date. Applications of CLI discussed include intraoperative radionuclide-guided surgery, monitoring of therapeutic efficacy, tomographic optical imaging capabilities, and the ability to perform multiplexed imaging using fluorophores excited by the Cerenkov radiation. While technical challenges still exist, Cerenkov imaging has materialized as an important molecular imaging modality.

摘要

切伦科夫发光成像(CLI)是一种新兴的混合成像模式,它利用许多常用医用同位素发出的光。当带电粒子在电介质中传播的速度超过该介质中的光速时,就会产生切伦科夫辐射(CR)。CR在近100年前首次得到详细描述,但直到最近才被应用于生物医学成像目的。这种成像模式备受关注,因为它能够利用广泛使用的发光成像设备来可视化临床诊断(所有正电子发射断层扫描放射性同位素)和许多治疗性放射性核素。在CLI应用中检测到的光量明显低于生物发光和荧光等其他光学成像技术中的光量。然而,其显著优势包括使用已获批准的放射性示踪剂且无需入射光源,从而导致高信噪比。此外,多个受试者可以同时成像(常见的生物发光设备中最多可同时成像5个),这在成本和时间方面都有优势。本综述总结了迄今为止切伦科夫发光成像领域的情况。讨论的CLI应用包括术中放射性核素引导手术、治疗效果监测、断层光学成像能力以及利用切伦科夫辐射激发的荧光团进行多重成像的能力。尽管技术挑战仍然存在,但切伦科夫成像已成为一种重要的分子成像模式。

相似文献

1
Cerenkov imaging - a new modality for molecular imaging.
Am J Nucl Med Mol Imaging. 2012;2(2):163-73. Epub 2012 Mar 28.
2
Cerenkov luminescence imaging of medical isotopes.
J Nucl Med. 2010 Jul;51(7):1123-30. doi: 10.2967/jnumed.110.076521. Epub 2010 Jun 16.
3
Cerenkov Luminescence Imaging (CLI) for cancer therapy monitoring.
J Vis Exp. 2012 Nov 13(69):e4341. doi: 10.3791/4341.
4
In vivo Cerenkov luminescence imaging: a new tool for molecular imaging.
Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4605-19. doi: 10.1098/rsta.2011.0271.
5
Cerenkov luminescence imaging (CLI) for image-guided cancer surgery.
Clin Transl Imaging. 2016;4(5):353-366. doi: 10.1007/s40336-016-0183-x. Epub 2016 May 24.
6
Computed Cerenkov luminescence yields for radionuclides used in biology and medicine.
Phys Med Biol. 2015 Jun 7;60(11):4263-80. doi: 10.1088/0031-9155/60/11/4263. Epub 2015 May 14.
7
Review of biomedical Čerenkov luminescence imaging applications.
Biomed Opt Express. 2015 Jul 28;6(8):3053-65. doi: 10.1364/BOE.6.003053. eCollection 2015 Aug 1.
8
Detection of Shortwave-Infrared Cerenkov Luminescence from Medical Isotopes.
J Nucl Med. 2023 Jan;64(1):177-182. doi: 10.2967/jnumed.122.264079. Epub 2022 Jun 23.
9
Current clinical applications of Cerenkov luminescence for intraoperative molecular imaging.
Eur J Nucl Med Mol Imaging. 2024 Aug;51(10):2931-2940. doi: 10.1007/s00259-024-06602-3. Epub 2024 Jan 20.
10
Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences.
EJNMMI Phys. 2017 Dec;4(1):14. doi: 10.1186/s40658-017-0181-8. Epub 2017 Mar 11.

引用本文的文献

2
Multiplexed imaging of radionuclides.
Nat Biomed Eng. 2025 Jun 20. doi: 10.1038/s41551-025-01406-8.
3
Potential theranostics of breast cancer with copper-64/67 sarcophagine-trastuzumab.
Chem Sci. 2025 Jan 23;16(9):3998-4005. doi: 10.1039/d4sc06969b. eCollection 2025 Feb 26.
5
Current clinical applications of Cerenkov luminescence for intraoperative molecular imaging.
Eur J Nucl Med Mol Imaging. 2024 Aug;51(10):2931-2940. doi: 10.1007/s00259-024-06602-3. Epub 2024 Jan 20.
6
Amplification of Cerenkov luminescence using semiconducting polymers for cancer theranostics.
Adv Funct Mater. 2023 Aug 15;33(33). doi: 10.1002/adfm.202302777. Epub 2023 May 1.
7
Practical Guidance for Developing Small-Molecule Optical Probes for In Vivo Imaging.
Mol Imaging Biol. 2023 Feb;25(1):240-264. doi: 10.1007/s11307-023-01800-1. Epub 2023 Feb 6.
9
Ho-Induced ZnO: Structural, Electron Density Distribution and Antibacterial Activity for Biomedical Application.
Appl Biochem Biotechnol. 2023 Jun;195(6):3941-3965. doi: 10.1007/s12010-022-03865-0. Epub 2022 Mar 17.
10
Light-Sensitive Phenacyl Crosslinked Dextran Hydrogels for Controlled Delivery.
Chemistry. 2022 Feb 21;28(10):e202103523. doi: 10.1002/chem.202103523. Epub 2022 Jan 27.

本文引用的文献

1
Quantitative modeling of Cerenkov light production efficiency from medical radionuclides.
PLoS One. 2012;7(2):e31402. doi: 10.1371/journal.pone.0031402. Epub 2012 Feb 20.
2
The potential for Cerenkov luminescence imaging of alpha-emitting radionuclides.
Phys Med Biol. 2012 Feb 7;57(3):771-83. doi: 10.1088/0031-9155/57/3/771. Epub 2012 Jan 18.
3
Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging.
J Nucl Med. 2012 Feb;53(2):312-317. doi: 10.2967/jnumed.111.094623. Epub 2012 Jan 12.
4
Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging.
J Biomed Opt. 2011 Dec;16(12):120506. doi: 10.1117/1.3663442.
5
In vivo Cerenkov luminescence imaging: a new tool for molecular imaging.
Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4605-19. doi: 10.1098/rsta.2011.0271.
7
Noninvasive cell-tracking methods.
Nat Rev Clin Oncol. 2011 Sep 27;8(11):677-88. doi: 10.1038/nrclinonc.2011.141.
8
9
Fast-specific tomography imaging via Cerenkov emission.
Mol Imaging Biol. 2012 Jun;14(3):286-92. doi: 10.1007/s11307-011-0510-6.
10
X-ray photolysis to release ligands from caged reagents by an intramolecular antenna sensitive to magnetic resonance imaging.
Angew Chem Int Ed Engl. 2011 Oct 4;50(41):9708-11. doi: 10.1002/anie.201102948. Epub 2011 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验