Suppr超能文献

DrugMiner:用于预测潜在可成药蛋白质的机器学习算法的比较分析

DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins.

作者信息

Jamali Ali Akbar, Ferdousi Reza, Razzaghi Saeed, Li Jiuyong, Safdari Reza, Ebrahimie Esmaeil

机构信息

Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran.

Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Drug Discov Today. 2016 May;21(5):718-24. doi: 10.1016/j.drudis.2016.01.007. Epub 2016 Jan 25.

Abstract

Application of computational methods in drug discovery has received increased attention in recent years as a way to accelerate drug target prediction. Based on 443 sequence-derived protein features, we applied the most commonly used machine learning methods to predict whether a protein is druggable as well as to opt for superior algorithm in this task. In addition, feature selection procedures were used to provide the best performance of each classifier according to the optimum number of features. When run on all features, Neural Network was the best classifier, with 89.98% accuracy, based on a k-fold cross-validation test. Among all the algorithms applied, the optimum number of most-relevant features was 130, according to the Support Vector Machine-Feature Selection (SVM-FS) algorithm. This study resulted in the discovery of new drug target which potentially can be employed in cell signaling pathways, gene expression, and signal transduction. The DrugMiner web tool was developed based on the findings of this study to provide researchers with the ability to predict druggable proteins. DrugMiner is freely available at www.DrugMiner.org.

摘要

近年来,作为加速药物靶点预测的一种方式,计算方法在药物发现中的应用受到了越来越多的关注。基于443个序列衍生的蛋白质特征,我们应用最常用的机器学习方法来预测一种蛋白质是否可成药,并在这项任务中选择最优算法。此外,特征选择程序用于根据最优特征数量提供每个分类器的最佳性能。在所有特征上运行时,基于k折交叉验证测试,神经网络是最佳分类器,准确率为89.98%。根据支持向量机-特征选择(SVM-FS)算法,在所有应用的算法中,最相关特征的最优数量为130个。本研究发现了可能可用于细胞信号通路、基因表达和信号转导的新药物靶点。基于本研究结果开发了DrugMiner网络工具,为研究人员提供预测可成药蛋白质的能力。可在www.DrugMiner.org免费获取DrugMiner。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验