Suppr超能文献

通过机器学习指导的虚拟筛选和生物评估发现新型 ULK1 抑制剂。

Discovery of novel ULK1 inhibitors through machine learning-guided virtual screening and biological evaluation.

机构信息

The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision & Brain Health), Wenzhou, Zhejiang, 325000, China.

出版信息

Future Med Chem. 2024;16(18):1821-1837. doi: 10.1080/17568919.2024.2385288. Epub 2024 Aug 15.

Abstract

Build a virtual screening model for ULK1 inhibitors based on artificial intelligence. Build machine learning and deep learning classification models and combine molecular docking and biological evaluation to screen ULK1 inhibitors from 13 million compounds. And molecular dynamics was used to explore the binding mechanism of active compounds. Possibly due to less available training data, machine learning models significantly outperform deep learning models. Among them, the Naive Bayes model has the best performance. Through virtual screening, we obtained three inhibitors with IC of μM level and they all bind well to ULK1. This study provides an efficient virtual screening model and three promising compounds for the study of ULK1 inhibitors.

摘要

基于人工智能构建 ULK1 抑制剂的虚拟筛选模型。构建机器学习和深度学习分类模型,并结合分子对接和生物评价从 1300 万种化合物中筛选 ULK1 抑制剂。并采用分子动力学探索活性化合物的结合机制。可能由于可用的训练数据较少,机器学习模型的性能明显优于深度学习模型。其中,朴素贝叶斯模型的性能最好。通过虚拟筛选,我们获得了三种具有 μM 水平 IC 的抑制剂,它们都与 ULK1 结合良好。本研究为 ULK1 抑制剂的研究提供了一种高效的虚拟筛选模型和三种有前途的化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/203a/11485869/d0202363e5d8/IFMC_A_2385288_UF0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验