Suppr超能文献

持续暴露于糖皮质激素会激活皮质-边缘系统促肾上腺皮质激素释放激素(CRH)信号通路,从而调节内源性大麻素功能。

Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function.

作者信息

Gray J Megan, Wilson Christopher D, Lee Tiffany T Y, Pittman Quentin J, Deussing Jan M, Hillard Cecilia J, McEwen Bruce S, Schulkin Jay, Karatsoreos Ilia N, Patel Sachin, Hill Matthew N

机构信息

Hotchkiss Brain Institute, University of Calgary, T2N4N1, Canada; Mathison Centre for Mental Health Research and Education,University of Calgary, T2N4N1, Canada; Department of Cell Biology & Anatomy, University of Calgary, T2N4N1, Canada; Physiology and Pharmacology, University of Calgary, T2N4N1, Canada.

Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, USA.

出版信息

Psychoneuroendocrinology. 2016 Apr;66:151-8. doi: 10.1016/j.psyneuen.2016.01.004. Epub 2016 Jan 11.

Abstract

Sustained exposure to stress or corticosteroids is known to cause changes in brain endocannabinoid (eCB) signaling, such that tissue contents of the eCBs N-arachidonylethanolamine (AEA) are generally reduced while 2-arachidonoylglycerol (2-AG) levels increase. These changes in eCB signaling are important for many of the aspects of chronic stress, such as anxiety, reward sensitivity and stress adaptation, yet the mechanisms mediating these changes are not fully understood. We have recently found that the stress-related neuropeptide corticotropin-releasing hormone (CRH), acting through the CRH type 1 receptor (CRHR1), can reduce AEA content by increasing its hydrolysis by the enzyme fatty acid amide hydrolase (FAAH) as well as increase 2-AG contents. As extra-hypothalamic CRH is upregulated by chronic corticosteroid or stress exposure, we hypothesized that increased CRH signaling through CRHR1 contributes to the effects of chronic corticosteroid exposure on the eCB system within the amygdala and prefrontal cortex. Male rats were exposed to 7 days of systemic corticosterone capsules, with or without concurrent exposure to a CRHR1 antagonist, after which we examined eCB content. Consistent with previous studies in the amygdala, sustained corticosterone exposure increases CRH mRNA in the prefrontal cortex. As was shown previously, FAAH activity was increased and AEA contents were reduced within the amygdala and prefrontal cortex following chronic corticosterone exposure. Chronic corticosterone exposure also elevated 2-AG content in the prefrontal cortex but not the amygdala. These corticosteroid-driven changes were all blocked by systemic CRHR1 antagonism. Consistent with these data indicating sustained increases in CRH signaling can mediate the effects of chronic elevations in corticosteroids, CRH overexpressing mice also exhibited increased FAAH-mediated AEA hydrolysis in the amygdala and prefrontal cortex compared to wild type. CRH overexpression increased 2-AG content in the amygdala, but not the prefrontal cortex. These data indicate that chronic elevations in CRH signaling, as is seen following exposure to chronic elevations in corticosterone or stress, drive persistent changes in eCB function. As reductions in AEA signaling mediate the effects of CRH and chronic stress on anxiety, these data provide a mechanism linking these processes.

摘要

已知持续暴露于应激或皮质类固醇会导致大脑内源性大麻素(eCB)信号传导发生变化,使得eCBs N-花生四烯酸乙醇胺(AEA)的组织含量通常会降低,而2-花生四烯酸甘油酯(2-AG)水平会升高。eCB信号传导的这些变化对慢性应激的许多方面都很重要,比如焦虑、奖赏敏感性和应激适应,然而介导这些变化的机制尚未完全明确。我们最近发现,与应激相关的神经肽促肾上腺皮质激素释放激素(CRH)通过1型CRH受体(CRHR1)发挥作用,可以通过增加脂肪酸酰胺水解酶(FAAH)对其的水解来降低AEA含量,同时增加2-AG含量。由于下丘脑外的CRH会因慢性皮质类固醇或应激暴露而上调,我们推测通过CRHR1增加的CRH信号传导有助于慢性皮质类固醇暴露对杏仁核和前额叶皮质内eCB系统的影响。雄性大鼠接受7天的全身性皮质酮胶囊处理,同时或不同时暴露于CRHR1拮抗剂,之后我们检测了eCB含量。与之前在杏仁核中的研究一致,持续的皮质酮暴露会增加前额叶皮质中的CRH mRNA。如之前所示,慢性皮质酮暴露后,杏仁核和前额叶皮质内的FAAH活性增加,AEA含量降低。慢性皮质酮暴露还会提高前额叶皮质中的2-AG含量,但不会提高杏仁核中的2-AG含量。全身性CRHR1拮抗作用会阻断这些由皮质类固醇驱动的变化。与这些数据表明CRH信号传导的持续增加可介导皮质类固醇慢性升高的影响一致,与野生型相比,CRH过表达小鼠的杏仁核和前额叶皮质中FAAH介导的AEA水解也增加。CRH过表达会增加杏仁核中的2-AG含量,但不会增加前额叶皮质中的2-AG含量。这些数据表明,如在暴露于皮质酮或应激的慢性升高后所见,CRH信号传导的慢性升高会驱动eCB功能的持续变化。由于AEA信号传导的减少介导了CRH和慢性应激对焦虑的影响,这些数据提供了一种将这些过程联系起来的机制。

相似文献

1
Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function.
Psychoneuroendocrinology. 2016 Apr;66:151-8. doi: 10.1016/j.psyneuen.2016.01.004. Epub 2016 Jan 11.
2
Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety.
J Neurosci. 2015 Mar 4;35(9):3879-92. doi: 10.1523/JNEUROSCI.2737-14.2015.
3
Rapid elevations in limbic endocannabinoid content by glucocorticoid hormones in vivo.
Psychoneuroendocrinology. 2010 Oct;35(9):1333-8. doi: 10.1016/j.psyneuen.2010.03.005. Epub 2010 Apr 15.
4
Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice.
Neuropharmacology. 2008 Jan;54(1):108-16. doi: 10.1016/j.neuropharm.2007.06.012. Epub 2007 Jun 29.
6
Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic-pituitary-adrenal axis.
Neuropsychopharmacology. 2009 Dec;34(13):2733-45. doi: 10.1038/npp.2009.114. Epub 2009 Aug 26.
7
Disruption of peri-adolescent endocannabinoid signaling modulates adult neuroendocrine and behavioral responses to stress in male rats.
Neuropharmacology. 2015 Dec;99:89-97. doi: 10.1016/j.neuropharm.2015.07.021. Epub 2015 Jul 17.
9
Early life stress alters the developmental trajectory of corticolimbic endocannabinoid signaling in male rats.
Neuropharmacology. 2019 Mar 1;146:154-162. doi: 10.1016/j.neuropharm.2018.11.036. Epub 2018 Nov 26.

引用本文的文献

1
Understanding the Role of Endocannabinoids in Posttraumatic Stress Disorder.
Int J Mol Sci. 2025 Jun 9;26(12):5527. doi: 10.3390/ijms26125527.
2
Corticosterone effects induced by stress and immunity and inflammation: mechanisms of communication.
Front Endocrinol (Lausanne). 2025 Mar 20;16:1448750. doi: 10.3389/fendo.2025.1448750. eCollection 2025.
5
Emotional comorbidities in epilepsy result from seizure-induced corticosterone activity.
Neurobiol Stress. 2024 Oct 11;33:100678. doi: 10.1016/j.ynstr.2024.100678. eCollection 2024 Nov.
6
Endocannabinoid signaling in stress, nausea, and vomiting.
Neurogastroenterol Motil. 2025 Mar;37(3):e14911. doi: 10.1111/nmo.14911. Epub 2024 Sep 2.
7
Endocannabinoid Hydrolase Inhibitors: Potential Novel Anxiolytic Drugs.
Drug Des Devel Ther. 2024 Jun 11;18:2143-2167. doi: 10.2147/DDDT.S462785. eCollection 2024.
8
NAPE-PLD regulates specific baseline affective behaviors but is dispensable for inflammatory hyperalgesia.
Neurobiol Pain. 2023 Jun 14;14:100135. doi: 10.1016/j.ynpai.2023.100135. eCollection 2023 Aug-Dec.
9
Alcohol-Endocannabinoid Interactions: Implications for Addiction-Related Behavioral Processes.
Alcohol Res. 2022 May 19;42(1):09. doi: 10.35946/arcr.v42.1.09. eCollection 2022.
10
Reviewing the Role of the Endocannabinoid System in the Pathophysiology of Depression.
Front Pharmacol. 2021 Dec 6;12:762738. doi: 10.3389/fphar.2021.762738. eCollection 2021.

本文引用的文献

1
Neurobiological Interactions Between Stress and the Endocannabinoid System.
Neuropsychopharmacology. 2016 Jan;41(1):80-102. doi: 10.1038/npp.2015.166. Epub 2015 Jun 12.
4
Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety.
J Neurosci. 2015 Mar 4;35(9):3879-92. doi: 10.1523/JNEUROSCI.2737-14.2015.
5
To stress or not to stress: a question of models.
Curr Protoc Neurosci. 2015 Jan 5;70:8.33.1-8.33.22. doi: 10.1002/0471142301.ns0833s70.
6
Adverse consequences of glucocorticoid medication: psychological, cognitive, and behavioral effects.
Am J Psychiatry. 2014 Oct;171(10):1045-51. doi: 10.1176/appi.ajp.2014.13091264.
9
A critical role for prefrontocortical endocannabinoid signaling in the regulation of stress and emotional behavior.
Neurosci Biobehav Rev. 2014 May;42:116-31. doi: 10.1016/j.neubiorev.2014.02.006. Epub 2014 Feb 26.
10
Amygdala FAAH and anandamide: mediating protection and recovery from stress.
Trends Pharmacol Sci. 2013 Nov;34(11):637-44. doi: 10.1016/j.tips.2013.08.008. Epub 2013 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验