Sumitomo Tomoko, Nakata Masanobu, Higashino Miharu, Yamaguchi Masaya, Kawabata Shigetada
Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
Sci Rep. 2016 Jan 29;7:20069. doi: 10.1038/srep20069.
Group A Streptococcus (GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions.
A组链球菌(GAS)是一种人类特异性病原体,可引发局部化脓性和危及生命的侵袭性全身性疾病。GAS与人纤溶酶原(PLG)的相互作用是促进其全身扩散的一个显著特征。在本研究中,发现一株M28血清型菌株主要定位于在PLG存在下培养的上皮细胞的三细胞紧密连接处。多项证据表明,PLG与三细胞紧密连接的主要成分tricellulin的相互作用对于细菌定位至关重要。定点诱变方法表明,tricellulin细胞外环中第217位和第252位的赖氨酸残基在PLG结合活性中起重要作用。此外,我们证明PLG作为tricellulin与链球菌表面烯醇化酶(SEN)之间的分子桥梁发挥作用。野生型菌株能够有效地穿过上皮单层细胞,同时伴随着跨膜连接蛋白的裂解。相比之下,SEN的PLG结合基序中的氨基酸取代显著损害了这些活性。值得注意的是,PLG与SEN的相互作用取决于PLG的物种特异性,这影响了细菌穿透的效率。我们的研究结果为GAS利用宿主PLG通过三细胞紧密连接加速细菌侵入更深组织的机制提供了见解。