Vu Henry M, Moran Thomas E, Liang Zhong, Bao Yun-Juan, Carles Paulina G, Keane Jessica C, Cerney Madelyn G, Dahnke Caitlyn N, Flores-Mireles Ana L, Ploplis Victoria A, Castellino Francis J, Lee Shaun W
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA.
Microbiol Spectr. 2025 Feb 4;13(2):e0260724. doi: 10.1128/spectrum.02607-24. Epub 2025 Jan 13.
Group A (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape. A major unresolved question regards the temporal dynamics of how GAS enmeshed in a fibrin clot can access plasminogen for clot dissolution and eventual dissemination. Here, we reveal through live imaging studies that GAS trapped inside a fibrin clot can remain viable in a latent state, until access to plasminogen activates fibrinolysis and dissemination. RNA-sequencing (RNA-seq) analysis shows marked changes in the wild-type (WT)-GAS transcriptome from the time bacteria were enmeshed inside the clot (4 h) to when dissemination was initiated (8 h). To gain a more fully realized model of how GAS trapped in fibrin clots can disseminate in the blood system, we utilized a novel 3D endothelial microfluidic device to demonstrate that GAS is fully capable of fibrinolysis in an endothelial environment, revealing a major underappreciated route by which GAS may cause more invasive outcomes. Our findings reveal for the first time that GAS can engage a latent, growth-suspended phase whereby physical structures such as fibrin clots that immobilize an invading pathogen allow bacteria to remain viable until sufficient access to plasminogen allows it to initiate fibrinolysis and escape into surrounding blood system and tissues.
Group A Streptococcus (GAS) is a human-specific bacterial pathogen that causes infections ranging in severity from mild to severe infections that can often be fatal. To protect the host, the innate immune system creates fibrin clots to trap bacteria and prevent deeper spread. GAS produces several factors that can initiate the dissolution of these fibrin clots to spread to deeper tissues, but we lack specific understanding of the timing of these events. Our studies demonstrate for the first time that GAS can delay their escape from fibrin clots to gain access to deeper tissues during infection, suggesting a key strategy that GAS utilize to cause more invasive disease.
A组链球菌(GAS)是一种主要的人类病原体,可导致包括坏死性筋膜炎在内的多种侵袭性疾病。宿主凝血级联反应启动纤维蛋白凝块以隔离细菌,防止其扩散到更深的组织中。GAS,尤其是嗜皮肤性菌株,利用特定的毒力因子,即纤溶酶原结合M蛋白(PAM)和链激酶(SK),来操纵止血并激活纤溶酶原,从而导致纤维蛋白溶解和纤维蛋白凝块逃逸。一个主要未解决的问题是,陷入纤维蛋白凝块中的GAS如何获取纤溶酶原以进行凝块溶解并最终扩散的时间动态。在这里,我们通过实时成像研究发现,被困在纤维蛋白凝块中的GAS可以以潜伏状态存活,直到获得纤溶酶原激活纤维蛋白溶解和扩散。RNA测序(RNA-seq)分析显示,从细菌被困在凝块中(4小时)到开始扩散(8小时),野生型(WT)-GAS转录组发生了显著变化。为了更全面地了解被困在纤维蛋白凝块中的GAS如何在血液系统中扩散,我们利用一种新型的3D内皮微流体装置证明GAS在内皮环境中完全能够进行纤维蛋白溶解,揭示了一条未被充分认识的GAS可能导致更具侵袭性后果的途径。我们的研究首次揭示,GAS可以进入一个潜伏的、生长暂停的阶段,在这个阶段,诸如纤维蛋白凝块等物理结构固定入侵病原体,使细菌能够存活,直到有足够的纤溶酶原使其启动纤维蛋白溶解并逃逸到周围的血液系统和组织中。
A组链球菌(GAS)是一种人类特异性细菌病原体,可导致从轻度到重度感染不等的感染,这些感染往往可能是致命的。为了保护宿主,先天免疫系统会产生纤维蛋白凝块来捕获细菌并防止其进一步扩散。GAS产生多种因子,可启动这些纤维蛋白凝块的溶解以扩散到更深的组织中,但我们对这些事件的时间安排缺乏具体了解。我们的研究首次表明,GAS在感染期间可以延迟从纤维蛋白凝块中逃逸以进入更深的组织,这表明GAS利用的一种关键策略可导致更具侵袭性的疾病。