Suppr超能文献

成瘾医学基因成像联盟:从神经成像到基因

Genetic imaging consortium for addiction medicine: From neuroimaging to genes.

作者信息

Mackey Scott, Kan Kees-Jan, Chaarani Bader, Alia-Klein Nelly, Batalla Albert, Brooks Samantha, Cousijn Janna, Dagher Alain, de Ruiter Michiel, Desrivieres Sylvane, Feldstein Ewing Sarah W, Goldstein Rita Z, Goudriaan Anna E, Heitzeg Mary M, Hutchison Kent, Li Chiang-Shan R, London Edythe D, Lorenzetti Valentina, Luijten Maartje, Martin-Santos Rocio, Morales Angelica M, Paulus Martin P, Paus Tomas, Pearlson Godfrey, Schluter Renée, Momenan Reza, Schmaal Lianne, Schumann Gunter, Sinha Rajita, Sjoerds Zsuzsika, Stein Dan J, Stein Elliot A, Solowij Nadia, Tapert Susan, Uhlmann Anne, Veltman Dick, van Holst Ruth, Walter Henrik, Wright Margaret J, Yucel Murat, Yurgelun-Todd Deborah, Hibar Derrek P, Jahanshad Neda, Thompson Paul M, Glahn David C, Garavan Hugh, Conrod Patricia

机构信息

Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA.

Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA.

出版信息

Prog Brain Res. 2016;224:203-23. doi: 10.1016/bs.pbr.2015.07.026. Epub 2015 Nov 4.

Abstract

Since the sample size of a typical neuroimaging study lacks sufficient statistical power to explore unknown genomic associations with brain phenotypes, several international genetic imaging consortia have been organized in recent years to pool data across sites. The challenges and achievements of these consortia are considered here with the goal of leveraging these resources to study addiction. The authors of this review have joined together to form an Addiction working group within the framework of the ENIGMA project, a meta-analytic approach to multisite genetic imaging data. Collectively, the Addiction working group possesses neuroimaging and genomic data obtained from over 10,000 subjects. The deadline for contributing data to the first round of analyses occurred at the beginning of May 2015. The studies performed on this data should significantly impact our understanding of the genetic and neurobiological basis of addiction.

摘要

由于典型的神经影像学研究样本量缺乏足够的统计效力来探索与脑表型的未知基因组关联,近年来已组织了几个国际遗传成像联盟来汇集各研究点的数据。本文探讨了这些联盟面临的挑战和取得的成就,目的是利用这些资源来研究成瘾问题。本综述的作者们共同在ENIGMA项目框架内组建了一个成瘾问题工作组,这是一种对多研究点遗传成像数据进行荟萃分析的方法。成瘾问题工作组总共拥有从一万多名受试者那里获得的神经影像学和基因组数据。第一轮分析数据的提交截止日期为2015年5月初。基于这些数据开展的研究应会显著影响我们对成瘾的遗传和神经生物学基础的理解。

相似文献

10
Similarities and Differences in Neuroimaging.神经影像学的异同。
Adv Exp Med Biol. 2017;1010:73-89. doi: 10.1007/978-981-10-5562-1_5.

引用本文的文献

2
Neuroimaging Biomarkers in Addiction.成瘾中的神经影像学生物标志物
medRxiv. 2024 Sep 3:2024.09.02.24312084. doi: 10.1101/2024.09.02.24312084.
5
Recalibrating single-study effect sizes using hierarchical Bayesian models.使用分层贝叶斯模型重新校准单研究效应量
Front Neuroimaging. 2023 Dec 21;2:1138193. doi: 10.3389/fnimg.2023.1138193. eCollection 2023.
6
The evolution of Big Data in neuroscience and neurology.神经科学与神经病学中大数据的发展
J Big Data. 2023;10(1):116. doi: 10.1186/s40537-023-00751-2. Epub 2023 Jul 10.
7
The Genetically Informed Neurobiology of Addiction (GINA) model.成瘾的遗传神经生物学(GINA)模型。
Nat Rev Neurosci. 2023 Jan;24(1):40-57. doi: 10.1038/s41583-022-00656-8. Epub 2022 Nov 29.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验