Suppr超能文献

一种由气相生成的银纳米颗粒自组装在平面基底上的表面增强拉曼光谱和电学传感器。

A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.

作者信息

Wang S, Tay L-L, Liu H

机构信息

DRDC Suffield Research Centre, Box 4000, Station Main, Medicine Hat, Alberta T1A 8K6, Canada.

National Research Council Canada, Ottawa, Ontario K1A0R6, Canada.

出版信息

Analyst. 2016 Mar 7;141(5):1721-33. doi: 10.1039/c5an02515j.

Abstract

Optical excitation of coupled plasmonic nanoparticles supports intense localized electromagnetic "hot-spots" which enable a variety of surface enhanced spectroscopies with the best known example being surface enhanced Raman scattering (SERS), currently of great interest for sensing applications. In this study, we present a novel SERS and electrical dual transduction chemical sensor based on gas-phase generated, negatively charged, silver nanoparticles self-assembled on glass slide forming a close-packed plasmonic monolayer thin-film that supports both SERS and electrical sensing. We demonstrate broad tunability of the localized surface plasmon resonance (LSPR) of the close-packed plasmonic nanoparticle monolayer thin-film sensors through control of the nanoparticle (NP) deposition time which directly influences the plasmonic coupling between neghibouring NPs. This broad tunability supports strong SERS activity from visible to near infrared (NIR) excitation wavelengths. We performed SERS and electrical measurements of a non-resonant molecule 4-mercaptobenzonitrile (4-MBN) as a sample Raman reporter molecule to determine the SERS enhancement factor of our SERS substrate. We measured an average SERS enhancement factor of 10(7) from our close-packed plasmonic nanoparticle monolayer thin-film sensor. Films which were grown below or above one nanoparticle monolayer both exhibited significantly lower SERS performance in one or more of SERS enhancement factor (EF), uniformity or repeatability. Our close-packed plasmonic nanoparticle monolayer thin-film sensors are highly uniform from point-to-point across the entire substrate and showed good reproducibility from batch-to-batch. These qualities are highly desirable for quantifiable detection of chemical and biological molecules. As an example application, this type of substrates provides an affordable and reliable sensing and identification capability for combatting new and emerging chemical and biological threats in support of security applications.

摘要

耦合等离子体纳米颗粒的光激发支持强烈的局域电磁“热点”,这使得各种表面增强光谱成为可能,最著名的例子是表面增强拉曼散射(SERS),目前在传感应用中备受关注。在本研究中,我们展示了一种基于气相生成的带负电荷的银纳米颗粒自组装在载玻片上形成紧密堆积的等离子体单层薄膜的新型SERS和电学双转导化学传感器,该薄膜同时支持SERS和电学传感。我们通过控制纳米颗粒(NP)沉积时间来证明紧密堆积的等离子体纳米颗粒单层薄膜传感器的局域表面等离子体共振(LSPR)具有广泛的可调谐性,沉积时间直接影响相邻NP之间的等离子体耦合。这种广泛的可调谐性支持从可见光到近红外(NIR)激发波长的强SERS活性。我们对非共振分子4-巯基苯甲腈(4-MBN)进行了SERS和电学测量,作为样品拉曼报告分子来确定我们SERS基底的SERS增强因子。我们从紧密堆积的等离子体纳米颗粒单层薄膜传感器中测得平均SERS增强因子为10^7。生长在一个纳米颗粒单层以下或以上的薄膜在SERS增强因子(EF)、均匀性或重复性中的一项或多项上均表现出显著较低的SERS性能。我们紧密堆积的等离子体纳米颗粒单层薄膜传感器在整个基底上点对点高度均匀,并且批次间具有良好的重现性。这些特性对于化学和生物分子的可量化检测非常理想。作为一个示例应用,这种类型的基底为应对新出现的化学和生物威胁以支持安全应用提供了一种经济实惠且可靠的传感和识别能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验