Suppr超能文献

通过等离子体 Ag 纳米聚集体的气溶胶自组装实现 SERS 热点工程,调控粒子间的距离。

SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance.

机构信息

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17177, Sweden.

RISE Research Institutes of Sweden, Stockholm, SE-11486, Sweden.

出版信息

Adv Sci (Weinh). 2022 Aug;9(22):e2201133. doi: 10.1002/advs.202201133. Epub 2022 Jun 7.

Abstract

Surface-enhanced Raman scattering (SERS) is a powerful sensing technique. However, the employment of SERS sensors in practical applications is hindered by high fabrication costs from processes with limited scalability, poor batch-to-batch reproducibility, substrate stability, and uniformity. Here, highly scalable and reproducible flame aerosol technology is employed to rapidly self-assemble uniform SERS sensing films. Plasmonic Ag nanoparticles are deposited on substrates as nanoaggregates with fine control of their interparticle distance. The interparticle distance is tuned by adding a dielectric spacer during nanoparticle synthesis that separates the individual Ag nanoparticles within each nanoaggregate. The dielectric spacer thickness dictates the plasmonic coupling extinction of the deposited nanoaggregates and finely tunes the Raman hotspots. By systematically studying the optical and morphological properties of the developed SERS surfaces, structure-performance relationships are established and the optimal hot-spots occur for interparticle distance of 1 to 1.5 nm among the individual Ag nanoparticles, as also validated by computational modeling, are identified for the highest signal enhancement of a molecular Raman reporter. Finally, the superior stability and batch-to-batch reproducibility of the developed SERS sensors are demonstrated and their potential with a proof-of-concept practical application in food-safety diagnostics for pesticide detection on fruit surfaces is explored.

摘要

表面增强拉曼散射(SERS)是一种强大的传感技术。然而,SERS 传感器在实际应用中的应用受到制造工艺限制的高成本、批次间较差的重现性、基底稳定性和均匀性的限制。在这里,采用高可扩展和可重复的火焰气溶胶技术来快速自组装均匀的 SERS 传感膜。将等离子体 Ag 纳米颗粒作为纳米聚集体沉积在基底上,可精细控制其颗粒间距离。通过在纳米颗粒合成过程中添加介电间隔物来调节颗粒间距离,介电间隔物将每个纳米聚集体内的单个 Ag 纳米颗粒分隔开。介电间隔物的厚度决定了沉积纳米聚集体的等离子体耦合消光,并精细调节 Raman 热点。通过系统研究所开发的 SERS 表面的光学和形态特性,建立了结构-性能关系,并确定了单个 Ag 纳米颗粒之间的最佳热点为 1 到 1.5nm 的颗粒间距离,这也通过计算建模进行了验证,这是为了获得分子拉曼报告器的最高信号增强。最后,展示了所开发的 SERS 传感器的卓越稳定性和批次间重现性,并探索了其在水果表面农药检测食品安全诊断中的实际应用的概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb22/9353460/0e16addd189a/ADVS-9-2201133-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验