Dini-Andreote Francisco, Pylro Victor Satler, Baldrian Petr, van Elsas Jan Dirk, Salles Joana Falcão
Microbial Ecology Group, Genomic Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands.
Genomics and Computational Biology Group, CPqRR/FIOCRUZ, Belo Horizonte, MG, Brazil.
ISME J. 2016 Aug;10(8):1984-97. doi: 10.1038/ismej.2015.254. Epub 2016 Jan 29.
Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem.
从海洋到陆地的转变是微生物生命中最根本的转变之一。鉴于微生物在土壤生物地球化学中的作用及其对景观演替的多方面影响,了解沿海生态系统中土壤微生物群落的分布和驱动因素至关重要。在这里,我们研究了一个成熟的盐沼时间序列中的真菌群落动态,该序列跨越了一个多世纪的生态系统发展。我们专注于提供对群落组成、多样性和生态生理变化的高分辨率评估,这些变化通过土壤形成产生了生态演替模式。值得注意的是,尽管早期演替地点的真菌内转录间隔区丰度低10到100倍,但它们的真菌丰富度与更成熟土壤的相当。这些新形成的地点在β多样性上也表现出显著的时间变化,这可能归因于潮汐作用导致的系统高度动态性质。真菌群落组成和生态生理特征沿着演替梯度发生了显著变化,揭示了生态替代的明显特征,并逐渐将环境从海洋系统转变为陆地系统。此外,基于距离的线性模型显示,土壤物理结构和有机质是真菌β多样性沿时间序列变化的最佳预测因子。综上所述,我们的研究为更好地理解盐沼中时空决定的真菌群落动态奠定了基础,并突出了它们在不断演变的生态系统中的生态生理特征和适应性。